SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael et al.: SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding. In: International Journal of Molecular Sciences 16 (2015), Nr. 4, S. 7478-7492. DOI: https://doi.org/10.3390/ijms16047478

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1595

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 368




Kleine Vorschau
Zusammenfassung: 
To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-microm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2015
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 286 77,72%
2 image of flag of United States United States 35 9,51%
3 image of flag of China China 10 2,72%
4 image of flag of Malaysia Malaysia 6 1,63%
5 image of flag of India India 5 1,36%
6 image of flag of Russian Federation Russian Federation 4 1,09%
7 image of flag of No geo information available No geo information available 3 0,82%
8 image of flag of Czech Republic Czech Republic 3 0,82%
9 image of flag of Switzerland Switzerland 3 0,82%
10 image of flag of Australia Australia 2 0,54%
    andere 11 2,99%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.