Exploring the Effects of Residence Time on the Utility of Stable Isotopes and S/C Ratios as Proxies for Ocean Connectivity

Download statistics - Document (COUNTER):

Stüeken, E.E.; Viehmann, S.; Hohl, S.V.: Exploring the Effects of Residence Time on the Utility of Stable Isotopes and S/C Ratios as Proxies for Ocean Connectivity. In: ACS Earth and Space Chemistry 7 (2023), Nr. 7, S. 1337-1349. DOI: https://doi.org/10.1021/acsearthspacechem.3c00018

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/15337

Selected time period:

year: 
month: 

Sum total of downloads: 7




Thumbnail
Abstract: 
Various geochemical proxies have been developed to determine if ancient sedimentary strata were deposited in marine or nonmarine environments. A critical parameter for proxy reliability is the residence time of aqueous species in seawater, which is rarely considered for proxies relying on stable isotopes and elemental abundance ratios. Differences in residence time may affect our ability to track geologically short-lived alternations between marine and nonmarine conditions. To test this effect for sulfur and nitrogen isotopes and sulfur/carbon ratios, we investigated a stratigraphic section in the Miocene Oberpullendorf Basin in Austria. Here, previous work revealed typical seawater-like rare earth element and yttrium (REY) systematics transitioning to nonmarine-like systematics. This shift was interpreted as a brief transition from an open marine depositional setting to a restricted embayment with a reduced level of exchange with the open ocean and possibly freshwater influence. Our isotopic results show no discernible response in carbonate-associated sulfate sulfur isotopes and carbon/sulfur abundance ratios during the interval of marine restriction inferred from the REY data, but nitrogen isotopes show a decrease by several permil. This observation is consistent with the much longer residence time of sulfate in seawater compared with REY and nitrate. Hence, this case study illustrates that the residence time is a key factor for the utility of seawater proxies. In some cases, it may make geochemical parameters more sensitive to marine water influx than paleontological observations, as in the Oberpullendorf Basin. Particular care is warranted in deep time, when marine residence times likely differ markedly from the modern.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 4 57.14%
2 image of flag of Germany Germany 2 28.57%
3 image of flag of Spain Spain 1 14.29%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse