Machine Learning Driven Design Of Experiments For Predictive Models In Production Systems

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Maier, S.; Zimmermann, P.; Daub, R.: Machine Learning Driven Design Of Experiments For Predictive Models In Production Systems. In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics: CPSL 2023 - 2. Hannover : publish-Ing., 2023, S. 110-118. DOI: https://doi.org/10.15488/15289

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 43




Kleine Vorschau
Zusammenfassung: 
Machine learning (ML) describes the ability of algorithms to structure and interpret data independently or to learn correlations. The use of ML is steadily increasing in companies of all sizes. However, insufficient market readiness of many ML solutions inhibits their application, especially in production systems. Predictive models apply ML to understand the complex behavior of a system through regression from operational data. This enables determining the relationship between factors and target variables. Accurate predictions of these models for production systems are essential for their application, as even minor variations can significantly affect the process. This accuracy depends on the available data to train the ML model. Production data usually shows a high epistemic uncertainty, leading to inaccurate predictions unfit for real-world applications. This paper presents ML-driven, data-centric Design of Experiments (DoE) to create a process-specific dataset with low epistemic uncertainty. This leads to improved accuracy of the predictive models, ultimately making them feasible for production systems. Our approach focuses on determining epistemic uncertainty in historical data of a production system to find data points of high value to the ML model in the factor space. To identify an efficient set of experiments, we cluster these data points weighted by feature importance. We evaluate the model by running these experiments and using the collected data for further training of a prediction model. Our approach achieves a significantly higher increase in accuracy compared to continuing the training of the prediction model with the same amount of regular operating data.
Lizenzbestimmungen: CC BY 3.0 DE
Publikationstyp: BookPart
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2023
Die Publikation erscheint in Sammlung(en):Proceedings CPSL 2023 - 2
Proceedings CPSL 2023 - 2

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 24 55,81%
2 image of flag of United States United States 8 18,60%
3 image of flag of Thailand Thailand 2 4,65%
4 image of flag of Sweden Sweden 2 4,65%
5 image of flag of No geo information available No geo information available 1 2,33%
6 image of flag of Syrian Arab Republic Syrian Arab Republic 1 2,33%
7 image of flag of Portugal Portugal 1 2,33%
8 image of flag of Indonesia Indonesia 1 2,33%
9 image of flag of Hong Kong Hong Kong 1 2,33%
10 image of flag of China China 1 2,33%
    andere 1 2,33%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.