Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions

Download statistics - Document (COUNTER):

Hartig, M.-S.; Schuster, S.; Heinzel, G.; Wanner, G.: Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions. In: Journal of Optics 25 (2023), Nr. 5, 055601. DOI: https://doi.org/10.1088/2040-8986/acc3ac

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/14852

Selected time period:

year: 
month: 

Sum total of downloads: 32




Thumbnail
Abstract: 
This paper is the second in a set of two investigating tilt-to-length (TTL) coupling. TTL describes the cross-coupling of angular or translational jitter into an interferometric phase signal and is an important noise source in precision interferometers, including space gravitational wave detectors like LISA. We discussed in Hartig et al (2022 J. Opt. 24 065601) the TTL coupling effects originating from optical path length changes, i.e. geometric TTL coupling. Within this work, we focus on the wavefront and detector geometry dependent TTL coupling, called non-geometric TTL coupling, in the case of two interfering fundamental Gaussian beams. We characterise the coupling originating from the properties of the interfering beams, i.e. their absolute and relative angle at the detector, their relative offset and the individual beam parameters. Furthermore, we discuss the dependency of the TTL coupling on the geometry of the detecting photodiode. Wherever possible, we provide analytical expressions for the expected TTL coupling effects. We investigate the non-geometric coupling effects originating from beam walk due to the angular or translational jitter of a mirror or a receiving system. These effects are directly compared with the corresponding detected optical path length changes in Hartig et al (2022 J. Opt. 24 065601). Both together provide the total interferometric readout. We discuss in which cases the geometric and non-geometric TTL effects cancel one-another. Additionally, we list linear TTL contributions that can be used to counteract other TTL effects. Altogether, our results provide key knowledge to minimise the total TTL coupling noise in experiments by design or realignment.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2023
Appears in Collections:Fakultät für Mathematik und Physik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of China China 9 28.12%
2 image of flag of Germany Germany 8 25.00%
3 image of flag of Russian Federation Russian Federation 5 15.62%
4 image of flag of United States United States 4 12.50%
5 image of flag of No geo information available No geo information available 1 3.12%
6 image of flag of Japan Japan 1 3.12%
7 image of flag of Italy Italy 1 3.12%
8 image of flag of Indonesia Indonesia 1 3.12%
9 image of flag of France France 1 3.12%
10 image of flag of Australia Australia 1 3.12%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse