Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Micke, P.; Stark, J.; King, S.A.; Leopold, T.; Pfeifer, T. et al.: Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications. In: Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques 90 (2019), Nr. 6, 065104. DOI: https://doi.org/10.1063/1.5088593

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/13525

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 79




Kleine Vorschau
Zusammenfassung: 
In vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times, for example, in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. At the experimental chamber, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 10−15 mbar level is achieved. In collaboration with the Max-Planck-Institut für Kernphysik, such a setup is now in operation at the Physikalisch-Technische Bundesanstalt for a next-generation optical clock experiment using highly charged ions.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2019
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 38 48,10%
2 image of flag of United States United States 7 8,86%
3 image of flag of Netherlands Netherlands 6 7,59%
4 image of flag of China China 5 6,33%
5 image of flag of Russian Federation Russian Federation 4 5,06%
6 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 4 5,06%
7 image of flag of Portugal Portugal 2 2,53%
8 image of flag of Korea, Republic of Korea, Republic of 2 2,53%
9 image of flag of India India 2 2,53%
10 image of flag of Czech Republic Czech Republic 2 2,53%
    andere 7 8,86%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.