A combined Statistical and TCAD Model as a method for understanding and reducing variations in multicrystalline Si solar cell production

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Fischer, G.; Müller, M.; Wagner, H.; Steingrube, S.; Altermatt, P.P.: A combined Statistical and TCAD Model as a method for understanding and reducing variations in multicrystalline Si solar cell production. In: Energy Procedia 27 (2012), S. 203-207. DOI: https://doi.org/10.1016/j.egypro.2012.07.052

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1338

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 152




Kleine Vorschau
Zusammenfassung: 
Monitoring the I-V parameters in mass production yields a distribution that cannot be understood in a simple manner. For example, if Voc varies greatly, it is not obvious whether this is mainly due to variations in the bulk lifetime or in the surface passivation or due to other sources. In this work, we develop a method where statistics is combined with numerical device modeling to obtain a physical interpretation of the observed variations. In the first part, we derive a multivariate statistical model to extract the main influences of fabrication fluctuations on the I-V parameters. This statistical model is based on cell parameters measured on a representative sample of solar cells from production. In the second part, we develop a computer-aided design (TCAD) device simulation model for multicrystalline Si solar cells. This TCAD model quantifies the I-V variations on a physically sound basis. However, the number of simulations is grossly reduced by feeding in solely the main influences obtained from the statistical model. In the third part, we verify this method by comparing the calculated distribution with production data. This model is used for optimization strategies for higher cell efficiency, smaller variations in cell parameters and improved yield in mass production. Furthermore, we will apply our methodology to advanced cell concepts. It will allow the early consideration of production fluctuation in device simulation of advanced cell concepts, and therefore a realistic assessment of such concepts.
Lizenzbestimmungen: CC BY-NC-ND 3.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2012
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 92 60,53%
2 image of flag of United States United States 23 15,13%
3 image of flag of Russian Federation Russian Federation 9 5,92%
4 image of flag of China China 7 4,61%
5 image of flag of No geo information available No geo information available 4 2,63%
6 image of flag of Vietnam Vietnam 3 1,97%
7 image of flag of Korea, Republic of Korea, Republic of 3 1,97%
8 image of flag of India India 2 1,32%
9 image of flag of Croatia Croatia 2 1,32%
10 image of flag of France France 2 1,32%
    andere 5 3,29%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.