Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Liu, B.; Sun, X.; Liao, Z.; Lu, X.; Zhang, L.; Hao, G.-P.: Nitrogen and boron doped carbon layer coated multiwall carbon nanotubes as high performance anode materials for lithium ion batteries. In: Scientific Reports 11 (2021), 5633. DOI: https://doi.org/10.1038/s41598-021-85187-5

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/13408

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 54




Kleine Vorschau
Zusammenfassung: 
Lithium ion batteries (LIBs) are at present widely used as energy storage and conversion device in our daily life. However, due to the limited power density, the application of LIBs is still restricted in some areas such as commercial vehicles or heavy-duty trucks. An effective strategy to solve this problem is to increase energy density through the development of battery materials. At the same time, a stable long cycling battery is a great demand of environmental protection and industry. Herein we present our new materials, nitrogen and boron doped carbon layer coated multiwall carbon nanotubes (NBC@MWCNTs), which can be used as anodes for LIBs. The electrochemical results demonstrate that the designed NBC@MWCNTs electrode possesses high stable capacity over an ultra-long cycling lifespan (5000 cycles) and superior rate capability even at very high current density (67.5 A g−1). Such impressive lithium storage properties could be ascribed to the synergistic coupling effect of the distinctive structural features, the reduced diffusion length of lithium ions, more active sites generated by doped atoms for lithium storage, as well as the enhancement of the electrode structural integrity. Taken together, these results indicate that the N, B-doped carbon@MWCNTs materials may have great potential for applications in next-generation high performance rechargeable batteries.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2021-03-11
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 25 46,30%
2 image of flag of Ireland Ireland 11 20,37%
3 image of flag of United States United States 9 16,67%
4 image of flag of Thailand Thailand 2 3,70%
5 image of flag of Italy Italy 2 3,70%
6 image of flag of No geo information available No geo information available 1 1,85%
7 image of flag of Sweden Sweden 1 1,85%
8 image of flag of Netherlands Netherlands 1 1,85%
9 image of flag of Indonesia Indonesia 1 1,85%
10 image of flag of Canada Canada 1 1,85%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.