Damage localization in data-driven vibration-based structural health monitoring using linear quadratic estimation theory

Download statistics - Document (COUNTER):

Wernitz, Stefan: Damage localization in data-driven vibration-based structural health monitoring using linear quadratic estimation theory. Hannover : Institut für Statik und Dynamik, 2022 (Mitteilungen des Instituts für Statik und Dynamik der Leibniz-Universität Hannover ; 47), xxv, 203 S.

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/12676

Selected time period:

year: 
month: 

Sum total of downloads: 427




Thumbnail
Abstract: 
Vibration-based Structural Health Monitoring (SHM) is classically approached from two different directions; both involve the acquisition and processing of vibration signals. The first and most popular strategy, which is also followed in the present thesis, relies entirely on the measurements. In contrast, the second approach employs physical models such as finite element(FE) models that are designed based on mechanical principles. In times in which the real-time processing of digital twins for engineering structures becomes more and more realistic, model-based approaches for vibration-based SHM receive increasing attention. Data-driven strategies are still primarily used in vibration-based SHM, and they will remain appealing in situations where precise physical modeling appears cumbersome. Hence, the need for efficient, robust, and reliable data-driven techniques concerning all stages and hurdles of SHMthat can prove themselves in practice will never vanish. In this regard, after over 25 years of research, the number of real-life validation studies is still surprisingly low.As for all SHM strategies, the difficulty concerning damage analysis increases with higher levels of realization. Beginning with the goal of detecting damage, SHM finally seeks to predict the remaining lifetime of a structure. The intermediate steps comprise the localization, classification, and assessment of damage. Without the existence of adequately calibratedphysics-based models, the successful implementation of methods tackling the objectives beyond damage localization in an unsupervised data-driven scheme is questionable. The term ‘unsupervised’ refers to the fact that knowledge about the manifestation of damage is not available. Especially in civil engineering, this situation pertains in general and is consideredin the present thesis. In data-driven SHM, where the area of structural alterations is narrowed down to adjacent sensors, damage localization suffers from the coarse spatial resolution of parsimonious data acquisition systems. Classical modal approaches that hold potential for damage localization require a dense sensor network or significant damage. Originating from the field of fault detection and isolation, estimator- and filter-based methods have proven to be applicable for damage identification of mechanical and civil engineering structures. Notably, they feature an enormous sensitivity towards structural changes when properly designed. Although it remains advantageous for the sake of precise damage localization, these tools such as Kalman or H-infinity filters do not exhibit the inherent demand for a dense sensor network. Consequently, they promise to be viable techniques for the application in vibration-based SHM.A central challenge of this discipline is the discrimination between the natural variability of the structure’s dynamics and the one caused by damage. The former results from varying environmental and operational conditions (EOCs). Especially highly sensitive methods for damage identification are affected by these natural changes, and thus, rely on an efficient datanormalization strategy, which can prove itself in practice. In light of these challenges, this thesis provides a real-life validation for the application of quadratic estimators in data-driven vibration-based SHM. To this end, an elaborate technique for estimator-based damage localization is adapted and included in an SHM framework comprising the necessary steps of data normalization and statistical testing. The damage analysis methodology was originally designed for H-infinity filters, which seem well-suited for use in SHM, as they do not assume specific properties of the excitation acting on the structure nor of the involved disturbances. However, previous studies have shown that, in some cases, the filter performance required to achieve high levels of sensitivity towards localized damage cannot be obtained. This issue can be circumvented by employing well-tuned Kalman filters. Therefore, a novel approach for noise covariance estimation is established at first. The associated estimation scheme constitutes a parametric extension of the popular autocovariance least-squares (ALS)technique. The effectiveness of this estimation technique in the context of Kalman filter-based damage localization is studied first using simulations and laboratory experiments. The second part is dedicated to the problem of handling EOCs. This body of work proposes an identification scheme for linear parameter-varying systems based on the interpolation of linear time-invariant systems for different operating points. A simulation study demonstrates the applicability for the purpose of data normalization. Finally, real-life validation of the proposed methods for SHM is conducted. Therefore, a steel lattice mast located outdoors functions as the test object. It is naturally affected by ambient sources of excitation, variability, and uncertainty. The mast, explicitly designed for this validation purpose, is equipped with reversible damage mechanisms that may be activatedor removed to reduce the stiffness at multiple locations of the structure. The investigations conducted in this part of the thesis demonstrate proper damage detection of all considered damages as well as localization for the highest degree of severity. These promising results suggest the applicability of the presented methods for Kalman filter tuning, damage localization, and data-normalization in the context of vibration-based SHM.
License of this version: CC BY-NC-ND 3.0 DE
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie
Dissertationen

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 286 66.98%
2 image of flag of China China 21 4.92%
3 image of flag of United States United States 18 4.22%
4 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 12 2.81%
5 image of flag of No geo information available No geo information available 10 2.34%
6 image of flag of Spain Spain 9 2.11%
7 image of flag of India India 8 1.87%
8 image of flag of United Kingdom United Kingdom 7 1.64%
9 image of flag of Hong Kong Hong Kong 6 1.41%
10 image of flag of Austria Austria 6 1.41%
    other countries 44 10.30%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse