Hydraulic and environmental design aspects of hard coastal structures - The example of stepped revetments

Download statistics - Document (COUNTER):

Schoonees, Talia: Hydraulic and environmental design aspects of hard coastal structures - The example of stepped revetments. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2022, xxiii, 140 S., DOI: https://doi.org/10.15488/12545

Selected time period:


Sum total of downloads: 262

To continue safeguarding coastal communities and infrastructure in the face ofclimate change requires a range of coastal protection measures. Simultaneously, the greater awareness for sustainable development and the sense of urgency to preserve and restore the coastal environment, underline the importance of designing coastal protection measures sustainably. Hard coastal structures are effective coastal protection measures against wave overtopping and flooding, as they form physical barriers against waves. However, the effects of hard structures on hydrodynamics, sediment dynamics and habitats, bring unintended negative changes to the environment. The first part of this dissertation critically discusses the use of hard coastal structures and their environmental impacts. To minimise the environmental impacts of hard coastal structures or create new ecosystem services, environmental aspects should be incorporated in standard coastal engineering practice from the earliest design stages. Based on examples and recommendations in literature, this dissertation provides guidance on environmental aspects to be considered in the design of hard coastal structures to increase their sustainability, i.e. consider future environmental, social and economic needs.The second part of this dissertation develops recommendations for the design ofsustainable hard coastal structures, with the example of stepped revetments. Stepped revetments reduce wave overtopping effectively in comparison to smooth dikes, as their steps dissipate energy as waves interact with the structure. In addition to their primary function of ensuring coastal safety, stepped revetments offer opportunities for ecological enhancement and social benefits. The multi-functionality of stepped revetments make these structures especially suitable in urban and touristic settings. This dissertation improves design recommendations for stepped revetments by identifying environmental design aspects and improving design formulae for their hydraulic responses (wave reflection, wave run-up and wave overtopping).Environmental design aspects are identified based on literature and includesuggested nature-based adaptations to stepped revetment designs. For instance,the vertical and horizontal step surfaces of stepped revetments provide areas hereroughness and surface complexity can be maximised to increase habitat variety and promote biodiversity. Additionally, their steps could be adapted to mimic habitats for intertidal organisms, e.g. by altering revetment steps to incorporate water retaining features like rock pools. The feasibility and success of these nature-based adaptations are highly dependent on the local environmental conditions, including hydrodynamics. With knowledge of environmental design aspects, coastal engineers gain a greater interdisciplinary understanding, thereby facilitating sustainable designs.Hydraulic responses of stepped revetments are studied and analysed to improveand expand design recommendations for wave overtopping, wave run-up and wavereflection. In full-scale wave flume experiments, two stepped revetment cross-sections, each with a slope of 1:3, were studied. The first cross-section had uniformstep heights of 0.50 m, which was selected to add the secondary function of providing seating, i.e. serve as a bench. For the second cross-section, uniform step heights of 0.17 m were selected, as a typical height for walking up a staircase. Wave heights (Hm0) up to 1 m and wave periods (Tm−1,0) up to 6.5 s were generated. Based on the measurements of the physical model tests, empirical formulae were developed for estimating wave overtopping, wave run-up and wave reflection.The tested stepped revetments effectively reduced wave overtopping in comparisonto smooth dikes, resulting in influence factors for roughness (γf ) between 0.43 and0.73. Compared to smooth dikes, the energy dissipation of the revetment stairs reduces wave reflection and wave run-up. Within the tested range of boundary conditions, the stepped revetment with large steps (Sh=0.50 m) proved more effective in dissipating energy and reducing wave overtopping (0.43 ≤ γf ≤ 0.54). The higher effectiveness of the large steps is also confirmed with the measured wave reflection. Wave conditions were repeated for the large (Sh = 0.50m) and small steps (Sh = 0.17m) showing that reflection coefficients were 55 % higher at the small steps. Individual overtopping volumes at the tested stepped revetments are described by a two-parameter Weibull distribution, revealing a higher median shape factor (b=1.63) for stepped revetments compared to breakwaters, smooth dikes or vertical walls. The wave flume tests provide greater insight in the functioning of stepped revetments and enable the quantification of the hydraulicresponses of stepped revetments.The experimental work presented in this dissertation provides one of the firstinvestigations into the hydraulic responses of stepped revetments at full scale.Compared to small-scale wave run-up and overtopping measurements, this studyreveals that hydraulic responses measured in small scale are likely affected by scale effects. Small-scale studies overestimate the wave overtopping reduction (γf ) by 2-31 % and underestimate relative wave run-up heights (Ru2%/Hm0) by 31-51 %. As a result, basing the designs of stepped revetments on small-scale measurements could therefore lead to unsafe designs.The gained knowledge on environmental aspects and hydraulic responses (wavereflection, run-up and overtopping) improves design recommendations for steppedrevetments with regard to coastal safety and sustainability. In terms of coastal safety, the presented full-scale model tests provide reliable design recommendations that are not affected by scale. In terms of sustainability, the dissertation provides a review of environmental design aspects of coastal structures in general, and stepped revetments in particular. Hence, this dissertation contributes to recommendations for designing sustainable coastal structures.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 150 57.25%
2 image of flag of Thailand Thailand 20 7.63%
3 image of flag of China China 18 6.87%
4 image of flag of United States United States 17 6.49%
5 image of flag of Philippines Philippines 5 1.91%
6 image of flag of Netherlands Netherlands 5 1.91%
7 image of flag of United Kingdom United Kingdom 5 1.91%
8 image of flag of Austria Austria 5 1.91%
9 image of flag of Vietnam Vietnam 4 1.53%
10 image of flag of Israel Israel 4 1.53%
    other countries 29 11.07%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository