Gercke, Julian Alexander: Supporting Explainable AI on Semantic Constraint Validation. Hannover : Gottfried Wilhelm Leibniz Universität, Master Thesis, 2022, 126 S. DOI: https://doi.org/10.15488/12527
Abstract: | |
There is a rising number of knowledge graphs available published through various sources. The enormous amount of linked data strives to give entities a semantic context. Using SHACL, the entities can be validated with respect to their context. On the other hand, an increasing usage of AI models in productive systems comes with a great responsibility in various areas. Predictive models like linear, logistic regression, and tree-based models, are still frequently used as they come with a simple structure, which allows for interpretability. However, explaining models includes verifying whether the model makes predictions based on human constraints or scientific facts. This work proposes to use the semantic context ofthe entities in knowledge graphs to validate predictive models with respect to user-defined constraints; therefore, providing a theoretical framework for a model-agnostic validation engine based on SHACL. In a second step, the model validation results are summarized in the case of a decision tree and visualized model-coherently. Finally, the performance of the framework is evaluated based on a Python implementation. | |
License of this version: | CC BY 3.0 DE |
Document Type: | MasterThesis |
Publishing status: | publishedVersion |
Issue Date: | 2022-06-14 |
Appears in Collections: | Fakultät für Elektrotechnik und Informatik |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
Germany | 125 | 44.01% |
2 | ![]() |
United States | 54 | 19.01% |
3 | ![]() |
China | 16 | 5.63% |
4 | ![]() |
Spain | 13 | 4.58% |
5 | ![]() |
No geo information available | 7 | 2.46% |
6 | ![]() |
Italy | 6 | 2.11% |
7 | ![]() |
France | 6 | 2.11% |
8 | ![]() |
Czech Republic | 5 | 1.76% |
9 | ![]() |
Iran, Islamic Republic of | 4 | 1.41% |
10 | ![]() |
Austria | 4 | 1.41% |
other countries | 44 | 15.49% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.