Experimental setup for fast BEC generation and number-stabilized atomic ensembles

Download statistics - Document (COUNTER):

Pür, Cebrail: Experimental setup for fast BEC generation and number-stabilized atomic ensembles. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2022, iv, 123 S. DOI: https://doi.org/10.15488/12526

Selected time period:

year: 
month: 

Sum total of downloads: 273




Thumbnail
Abstract: 
Ultracold atomic ensembles represent a cornerstone of today’s modern quantum experiments. In particular, the generation of Bose-Einstein condensates (BECs) has paved the way for a myriad of fundamental research topics as well as novel experimental concepts and related applications. As coherent matter waves, BECs promise to be a valuable resource for atom interferometry that allows for high-precision sensing of gravitational fields or inertial moments as accelerations and rotations. In general, the sensitivity of state-of-the-art atom interferometers is fundamentally restricted by the Standard Quantum Limit (SQL). Multi-particle entangled states (e.g. spin-squeezed states, Twin-Fock states, Schrödinger cat states) generated in BECs can be employed to surpass the SQL and shift the sensitivity limit further towards the more fundamental Heisenberg Limit (HL). However, in current real-world atom interferometric applications, ultracold but uncondensed atomic clouds are employed, due to their speed advantage in the sample preparation. The creation of a BEC can take up several tens of seconds, while standard high-precision atom interferometers operate with a cycle rate of several Hz. In addition, the pursued entangled states can be only beneficial if technical noise sources, such as magnetic field or detection noise are not dominating the measurement resolution. These challenges need to be overcome in order to fully exploit the potential sensitivity gain offered by a quantum-enhanced atom interferometer.This thesis describes the design and implementation of a new experimental setup for Heisenberg-limited atom interferometry, which incorporates a high-flux BEC source and the manipulation and detection of atoms at the single-particle level.The presented fast BEC preparation includes a high-flux atom source in a double magneto-optical trap (MOT) configuration that allows to collect 87Rb atoms in a 3D-MOT, which is supplied by a 2D+-MOT with 2×10^10 atoms/s. Forced evaporative cooling of the atoms is divided into two stages, which is sequentially carried out in a magnetic quadrupole trap (QPT) and a crossed-beam optical dipole trap (cODT). The high-flux atom source together with the hybrid evaporation scheme allows to consistently produce BECs with an average of 2×10^5 atoms within 3.5 s.The capabilities of the single-particle resolving detection are demonstrated by realizing a feedback control loop to stabilize the captured number of atoms in a small MOT. A proof-of-principle measurement is demonstrated for the successful stabilization of a target number of 7 atoms with sub-Poissonian fluctuations. The number noise is suppressed by 18 dB below shot noise, which corresponds to a preparation fidelity of 92%.Based on this success, the thesis presents an even improved single-particle resolution. The system comprises a six-channel fiber-based optical setup, which provides independent intensity stabilization and frequency detuning, improved pointing stability as well as a better spatial overlap of the MOT beams. The presented high-speed BEC production combined with accurate atom number preparation and detection, as the two main features of the experimental apparatus, pave the way for a future entanglement-enhanced performance of atom interferometers.
License of this version: CC BY 3.0 DE
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Dissertationen
QUEST-Leibniz-Forschungsschule

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 114 41.76%
2 image of flag of China China 34 12.45%
3 image of flag of United States United States 30 10.99%
4 image of flag of India India 10 3.66%
5 image of flag of United Kingdom United Kingdom 9 3.30%
6 image of flag of Czech Republic Czech Republic 8 2.93%
7 image of flag of No geo information available No geo information available 6 2.20%
8 image of flag of Singapore Singapore 6 2.20%
9 image of flag of Russian Federation Russian Federation 6 2.20%
10 image of flag of Hong Kong Hong Kong 5 1.83%
    other countries 45 16.48%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse