Polybaric fractional crystallisation of arc magmas: an experimental study simulating trans-crustal magmatic systems

Download statistics - Document (COUNTER):

Marxer, F.; Ulmer, P.; Müntener, O.: Polybaric fractional crystallisation of arc magmas: an experimental study simulating trans-crustal magmatic systems. In: Contributions to Mineralogy and Petrology 177 (2022), Nr. 1, 3. DOI: https://doi.org/10.1007/s00410-021-01856-8

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/12509

Selected time period:

year: 
month: 

Sum total of downloads: 34




Thumbnail
Abstract: 
Crystallisation-driven differentiation is one fundamental mechanism proposed to control the compositional evolution of magmas. In this experimental study, we simulated polybaric fractional crystallisation of mantle-derived arc magmas. Various pressure–temperature trajectories were explored to cover a range of potential magma ascent paths and to investigate the role of decompression on phase equilibria and liquid lines of descent (LLD). Fractional crystallisation was approached in a step-wise manner by repetitively synthesising new starting materials chemically corresponding to liquids formed in previous runs. Experiments were performed at temperatures ranging from 1140 to 870 °C with 30 °C steps, and pressure was varied between 0.8 and 0.2 GPa with 0.2 GPa steps. For most fractionation paths, oxygen fugacity (fO2) was buffered close to the Ni-NiO equilibrium (NNO). An additional fractionation series was conducted at fO2 corresponding to the Re-ReO2 buffer (RRO ≈ NNO+2). High-pressure experiments (0.4–0.8 GPa) were run in piston cylinder apparatus while 0.2 GPa runs were conducted in externally heated pressure vessels. Resulting liquid lines of descent follow calc-alkaline differentiation trends where the onset of pronounced silica enrichment coincides with the saturation of amphibole and/or Fe–Ti–oxide. Both pressure and fO2 exert crucial control on the stability fields of olivine, pyroxene, amphibole, plagioclase, and Fe–Ti–oxide phases and on the differentiation behaviour of arc magmas. Key observations are a shift of the olivine–clinopyroxene cotectic towards more clinopyroxene-rich liquid composition, an expansion of the plagioclase stability field and a decrease of amphibole stability with decreasing pressure. Decompression-dominated ascent trajectories result in liquid lines of descent approaching the metaluminous compositional range observed for typical arc volcanic rocks, while differentiation trends obtained for cooling-dominated trajectories evolve to peraluminous compositions, similar to isobaric liquid lines of descent at elevated pressures. Experiments buffered at RRO provide a closer match with natural calc-alkaline differentiation trends compared to fO2 conditions close to NNO. We conclude that decompression-dominated fractionation at oxidising conditions represents one possible scenario for arc magma differentiation. © 2021, The Author(s).
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 13 38.24%
2 image of flag of Germany Germany 8 23.53%
3 image of flag of China China 7 20.59%
4 image of flag of Iraq Iraq 2 5.88%
5 image of flag of United Kingdom United Kingdom 2 5.88%
6 image of flag of Taiwan Taiwan 1 2.94%
7 image of flag of Ireland Ireland 1 2.94%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse