Demand-driven data acquisition for large scale fleets

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Matesanz, P.; Graen, T.; Fiege, A.; Nolting, M.; Nejdl, W.: Demand-driven data acquisition for large scale fleets. In: Sensors 21 (2021), Nr. 21, 7190. DOI: https://doi.org/10.3390/s21217190

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/12496

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 129




Kleine Vorschau
Zusammenfassung: 
Automakers manage vast fleets of connected vehicles and face an ever-increasing demand for their sensor readings. This demand originates from many stakeholders, each potentially requiring different sensors from different vehicles. Currently, this demand remains largely unfulfilled due to a lack of systems that can handle such diverse demands efficiently. Vehicles are usually passive participants in data acquisition, each continuously reading and transmitting the same static set of sensors. However, in a multi-tenant setup with diverse data demands, each vehicle potentially needs to provide different data instead. We present a system that performs such vehicle-specific minimization of data acquisition by mapping individual data demands to individual vehicles. We collect personal data only after prior consent and fulfill the requirements of the GDPR. Non-personal data can be collected by directly addressing individual vehicles. The system consists of a software component natively integrated with a major automaker’s vehicle platform and a cloud platform brokering access to acquired data. Sensor readings are either provided via near real-time streaming or as recorded trip files that provide specific consistency guarantees. A performance evaluation with over 200,000 simulated vehicles has shown that our system can increase server capacity on-demand and process streaming data within 269 ms on average during peak load. The resulting architecture can be used by other automakers or operators of large sensor networks. Native vehicle integration is not mandatory; the architecture can also be used with retrofitted hardware such as OBD readers. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2021
Die Publikation erscheint in Sammlung(en):Fakultät für Elektrotechnik und Informatik
Forschungszentren

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 46 35,66%
2 image of flag of United States United States 27 20,93%
3 image of flag of Russian Federation Russian Federation 6 4,65%
4 image of flag of Korea, Republic of Korea, Republic of 5 3,88%
5 image of flag of South Africa South Africa 4 3,10%
6 image of flag of France France 4 3,10%
7 image of flag of China China 4 3,10%
8 image of flag of Israel Israel 3 2,33%
9 image of flag of Ireland Ireland 3 2,33%
10 image of flag of United Kingdom United Kingdom 3 2,33%
    andere 24 18,60%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.