Numerical modelling of interaction between aluminium structure and explosion in soil

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Chen, J.-Y.; Feng, D.-L.; Lien, F.-S.; Yee, E.; Deng, S.-X. et al.: Numerical modelling of interaction between aluminium structure and explosion in soil. In: Applied Mathematical Modelling 99 (2021), S. 760-784. DOI: https://doi.org/10.1016/j.apm.2021.07.010

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/12431

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 70




Kleine Vorschau
Zusammenfassung: 
In this paper, a graphics processing unit-accelerated smoothed particle hydrodynamics solver is presented to simulate the three-dimensional explosions in soils and their damage to aluminium structures. To achieve this objective, a number of equations of state and constitutive models required to close the governing equations are incorporated into the proposed smoothed particle hydrodynamics framework, including the Jones-Wilkins-Lee equation of state for explosive materials, the Grüneisen equation of state for metals, the elastic-perfectly plastic constitutive model for metals, and the elastoplastic and elasto-viscoplastic constitutive models for soils. The proposed smoothed particle hydrodynamics methodology was implemented using the Compute Unified Device Architecture programming interface on an NVIDIA graphics processing unit in order to improve the computational efficiency. The various components of the proposed methodology were validated using four test cases, namely, a C4 detonation and an aluminium bar expanded by denotation to validate the modelling of explosion, a cylindrical Taylor bar impact test case to validate the modelling of large deformation in metals, a sand collapse test for the modelling of soils. Following the validation, the proposed method was used to simulate the detonation of an explosive material (C4) in soil and the concomitant deformation of an aluminium plate resulting from this explosion. The predicted results of this simulation are shown to be in good conformance with available experimental data. Finally, it is shown that the proposed graphics processing unit-accelerated SPH solver is able to model interaction problems involving millions of particles in a reasonable time. © 2021 The Authors
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2021
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 24 34,29%
2 image of flag of United States United States 14 20,00%
3 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 7 10,00%
4 image of flag of China China 6 8,57%
5 image of flag of India India 4 5,71%
6 image of flag of France France 4 5,71%
7 image of flag of Taiwan Taiwan 1 1,43%
8 image of flag of Turkey Turkey 1 1,43%
9 image of flag of Latvia Latvia 1 1,43%
10 image of flag of Luxembourg Luxembourg 1 1,43%
    andere 7 10,00%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.