An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution

Download statistics - Document (COUNTER):

Junker, P.; Balzani, D.: An extended Hamilton principle as unifying theory for coupled problems and dissipative microstructure evolution. In: Continuum Mechanics and Thermodynamics 33 (2021), Nr. 4, S. 1931-1956. DOI: https://doi.org/10.1007/s00161-021-01017-z

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/12402

Selected time period:

year: 
month: 

Sum total of downloads: 32




Thumbnail
Abstract: 
An established strategy for material modeling is provided by energy-based principles such that evolution equations in terms of ordinary differential equations can be derived. However, there exist a variety of material models that also need to take into account non-local effects to capture microstructure evolution. In this case, the evolution of microstructure is described by a partial differential equation. In this contribution, we present how Hamilton’s principle provides a physically sound strategy for the derivation of transient field equations for all state variables. Therefore, we begin with a demonstration how Hamilton’s principle generalizes the principle of stationary action for rigid bodies. Furthermore, we show that the basic idea behind Hamilton’s principle is not restricted to isothermal mechanical processes. In contrast, we propose an extended Hamilton principle which is applicable to coupled problems and dissipative microstructure evolution. As example, we demonstrate how the field equations for all state variables for thermo-mechanically coupled problems, i.e., displacements, temperature, and internal variables, result from the stationarity of the extended Hamilton functional. The relation to other principles, as the principle of virtual work and Onsager’s principle, is given. Finally, exemplary material models demonstrate how to use the extended Hamilton principle for thermo-mechanically coupled elastic, gradient-enhanced, rate-dependent, and rate-independent materials. © 2021, The Author(s).
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2021
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 13 40.62%
2 image of flag of United States United States 12 37.50%
3 image of flag of China China 4 12.50%
4 image of flag of Taiwan Taiwan 1 3.12%
5 image of flag of United Kingdom United Kingdom 1 3.12%
6 image of flag of Austria Austria 1 3.12%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse