Arbitrary Phase Access for Stable Fiber Interferometers

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Roztocki, P.; MacLellan, B.; Islam, M.; Reimer, C.; Fischer, B. et al.: Arbitrary Phase Access for Stable Fiber Interferometers. In: Laser and Photonics Reviews 15 (2021), Nr. 7, 2000524. DOI: https://doi.org/10.1002/lpor.202000524

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/12346

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 49




Kleine Vorschau
Zusammenfassung: 
Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate device isolation) to <1.3 × 10−3 π rad error signal Allan deviation across 1 ms to 1.2 h integration times for all tested phases, ranging from 0 to 2π. More importantly, the phase-independence of this stability is shown across the full 2π range, granting access to arbitrary phase settings, central for, e.g., performing quantum projection measurements and coherent pulse recombination. Furthermore, the scheme is characterized with attenuated optical reference signals and single-photon detectors, and extended functionality is demonstrated through the use of pulsed reference signals (allowing time-multiplexing of both main and reference signals). Finally, the scheme is used to demonstrate radiofrequency-controlled interference of high-dimensional time-bin entangled states. © 2021 The Authors. Laser & Photonics Reviews published by Wiley-VCH GmbH
Lizenzbestimmungen: CC BY-NC-ND 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2021
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of United States United States 16 32,65%
2 image of flag of Germany Germany 11 22,45%
3 image of flag of China China 8 16,33%
4 image of flag of Vietnam Vietnam 4 8,16%
5 image of flag of Spain Spain 2 4,08%
6 image of flag of Netherlands Netherlands 1 2,04%
7 image of flag of Korea, Republic of Korea, Republic of 1 2,04%
8 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 1 2,04%
9 image of flag of Indonesia Indonesia 1 2,04%
10 image of flag of United Kingdom United Kingdom 1 2,04%
    andere 3 6,12%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.