Yu, R.; Tang, R.; Rokicki, M.; Gadiraju, U.; Dietze, S.: Topic-independent modeling of user knowledge in informational search sessions. In: Information Retrieval Journal 24 (2021), Nr. 3, S. 240-268. DOI: https://doi.org/10.1007/s10791-021-09391-7
Abstract: | |
Web search is among the most frequent online activities. In this context, widespread informational queries entail user intentions to obtain knowledge with respect to a particular topic or domain. To serve learning needs better, recent research in the field of interactive information retrieval has advocated the importance of moving beyond relevance ranking of search results and considering a user’s knowledge state within learning oriented search sessions. Prior work has investigated the use of supervised models to predict a user’s knowledge gain and knowledge state from user interactions during a search session. However, the characteristics of the resources that a user interacts with have neither been sufficiently explored, nor exploited in this task. In this work, we introduce a novel set of resource-centric features and demonstrate their capacity to significantly improve supervised models for the task of predicting knowledge gain and knowledge state of users in Web search sessions. We make important contributions, given that reliable training data for such tasks is sparse and costly to obtain. We introduce various feature selection strategies geared towards selecting a limited subset of effective and generalizable features. © 2021, The Author(s). | |
License of this version: | CC BY 4.0 Unported |
Document Type: | Article |
Publishing status: | publishedVersion |
Issue Date: | 2021 |
Appears in Collections: | Forschungszentren |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
United States | 26 | 44.07% |
2 | ![]() |
Germany | 11 | 18.64% |
3 | ![]() |
Thailand | 7 | 11.86% |
4 | ![]() |
China | 4 | 6.78% |
5 | ![]() |
No geo information available | 2 | 3.39% |
6 | ![]() |
Russian Federation | 2 | 3.39% |
7 | ![]() |
Netherlands | 2 | 3.39% |
8 | ![]() |
Switzerland | 2 | 3.39% |
9 | ![]() |
Taiwan | 1 | 1.69% |
10 | ![]() |
India | 1 | 1.69% |
other countries | 1 | 1.69% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.