Topic-independent modeling of user knowledge in informational search sessions

Download statistics - Document (COUNTER):

Yu, R.; Tang, R.; Rokicki, M.; Gadiraju, U.; Dietze, S.: Topic-independent modeling of user knowledge in informational search sessions. In: Information Retrieval Journal 24 (2021), Nr. 3, S. 240-268. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 59

Web search is among the most frequent online activities. In this context, widespread informational queries entail user intentions to obtain knowledge with respect to a particular topic or domain. To serve learning needs better, recent research in the field of interactive information retrieval has advocated the importance of moving beyond relevance ranking of search results and considering a user’s knowledge state within learning oriented search sessions. Prior work has investigated the use of supervised models to predict a user’s knowledge gain and knowledge state from user interactions during a search session. However, the characteristics of the resources that a user interacts with have neither been sufficiently explored, nor exploited in this task. In this work, we introduce a novel set of resource-centric features and demonstrate their capacity to significantly improve supervised models for the task of predicting knowledge gain and knowledge state of users in Web search sessions. We make important contributions, given that reliable training data for such tasks is sparse and costly to obtain. We introduce various feature selection strategies geared towards selecting a limited subset of effective and generalizable features. © 2021, The Author(s).
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2021
Appears in Collections:Forschungszentren

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 26 44.07%
2 image of flag of Germany Germany 11 18.64%
3 image of flag of Thailand Thailand 7 11.86%
4 image of flag of China China 4 6.78%
5 image of flag of No geo information available No geo information available 2 3.39%
6 image of flag of Russian Federation Russian Federation 2 3.39%
7 image of flag of Netherlands Netherlands 2 3.39%
8 image of flag of Switzerland Switzerland 2 3.39%
9 image of flag of Taiwan Taiwan 1 1.69%
10 image of flag of India India 1 1.69%
    other countries 1 1.69%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository