Knowledge Graphs for Data And Knowledge Management in Cyber-Physical Production Systems

Download statistics - Document (COUNTER):

Bretones Cassoli, B.; Jourdan, N.; Metternich, J.: Knowledge Graphs for Data And Knowledge Management in Cyber-Physical Production Systems. In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics: CPSL 2022. Hannover : publish-Ing., 2022, S. 445-454. DOI: https://doi.org/10.15488/12180

Selected time period:

year: 
month: 

Sum total of downloads: 425




Thumbnail
Abstract: 
Cyber-physical production systems are constituted of various sub-systems in a production environment, from machines to logistics networks, that are connected and exchange data in real-time. Every sub-system consumes and generates data. This data has the potential to support decision making and optimization of production processes. To extract valuable information from this data, however, different data sources must be consolidated and analyzed. A Knowledge Graph (KG), also known as a semantic network, represents a net of real-world entities, i.e., machines, sensors, processes, or concepts, and illustrates their relationship. KG allows us to encode the knowledge and data context into a human interpretable form and is amenable to automated analysis and inference. This paper presents the potential of KG in manufacturing and proposes a framework for its implementation. The proposed framework should assist practitioners in integrating raw data from multiple data sources in production, developing a suitable data model, creating the knowledge graph, and using it in a graph application. Although the framework is applicable for different purposes, this work illustrates its use for supporting the quality assessment of products in a discrete manufacturing production line.
License of this version: CC BY 3.0 DE
Document Type: BookPart
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Proceedings CPSL 2022

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 175 41.18%
2 image of flag of United States United States 51 12.00%
3 image of flag of India India 18 4.24%
4 image of flag of China China 17 4.00%
5 image of flag of United Kingdom United Kingdom 16 3.76%
6 image of flag of Brazil Brazil 14 3.29%
7 image of flag of No geo information available No geo information available 8 1.88%
8 image of flag of Australia Australia 7 1.65%
9 image of flag of Israel Israel 6 1.41%
10 image of flag of Spain Spain 6 1.41%
    other countries 107 25.18%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse