Schuh, G.; Stroh, M.-F.; Benning, J.; Leachu, S.; Schmid, K.: Function Analysis for Selecting Automated Machine Learning Solutions. In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics: CPSL 2022. Hannover : publish-Ing., 2022, S. 359-369. DOI: https://doi.org/10.15488/12166
Abstract: | |
Methods of machine learning (ML) are notoriously difficult for enterprises to employ productively. Data science is not a core skill of most companies, and acquiring external talent is expensive. Automated machine learning (Auto-ML) aims to alleviate this, democratising machine learning by introducing elements such as low-code / no-code functionalities into its model creation process. Multiple applications are possible for Auto-ML, such as Natural Language Processing (NLP), predictive modelling and optimization. However, employing Auto-ML still proves difficult for companies due to the dynamic vendor market: The solutions vary in scope and functionality while providers do little to delineate their offerings from related solutions like industrial IoT-Platforms. Additionally, the current research on Auto-ML focuses on mathematical optimization of the underlying algorithms, with diminishing returns for end users. The aim of this paper is to provide an overview over available, user-friendly ML technology through a descriptive model of the functions of current Auto-ML solutions. The model was created based on case studies of available solutions and an analysis of relevant literature. This method yielded a comprehensive function tree for Auto-ML solutions along with a methodology to update the descriptive model in case the dynamic provider market changes. Thus, the paper catalyses the use of ML in companies by providing companies and stakeholders with a framework to assess the functional scope of Auto-ML solutions. | |
License of this version: | CC BY 3.0 DE |
Document Type: | BookPart |
Publishing status: | publishedVersion |
Issue Date: | 2022 |
Appears in Collections: | Proceedings CPSL 2022 |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
Germany | 93 | 54.07% |
2 | ![]() |
United States | 15 | 8.72% |
3 | ![]() |
Pakistan | 11 | 6.40% |
4 | ![]() |
Russian Federation | 5 | 2.91% |
5 | ![]() |
China | 5 | 2.91% |
6 | ![]() |
Portugal | 4 | 2.33% |
7 | ![]() |
Indonesia | 4 | 2.33% |
8 | ![]() |
Japan | 3 | 1.74% |
9 | ![]() |
Czech Republic | 3 | 1.74% |
10 | ![]() |
Austria | 3 | 1.74% |
other countries | 26 | 15.12% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.