Explainable Deep Reinforcement Learning for Production Control

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Theumer, P.; Edenhofner, F.; Zimmermann, R.; Zipfel, A.: Explainable Deep Reinforcement Learning for Production Control. In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics: CPSL 2022. Hannover : publish-Ing., 2022, S. 809-818. DOI: https://doi.org/10.15488/12158

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 699




Kleine Vorschau
Zusammenfassung: 
Due to the growing number of variants and smaller batch sizes manufacturing companies have to cope with increasing material flow complexity. Thus, increasing the difficulty for production planning and control (PPC) to create a feasible and economic production plan. Despite significant advances in PPC research, current PPC systems do not yet sufficiently meet the industry’s requirements (e.g., decision quality, reaction time, user trust). However, recent progress in the digitalization of production systems results in an increased amount of data being collected, thus enabling the use of data-intensive applications technologies, e.g., machine learning (ML). ML provides new possibilities for PPC to handle increasing complexity caused by rising numbers of product variants paired with smaller lot sizes. At the same time, ML can increase the decision quality and reduce the reaction time to disturbances in the production system, e.g., machine breakdowns. Partly, ML models, e.g., artificial neural networks (ANN), are perceived as black-box models, resulting in reduced user’s trust in the decision proposed by an ML-based PPC system. The approach presented in this publication aims at a more functional and user-friendly PPC system by leveraging multi-agent reinforcement-learning (MARL), an accomplished approach within the field of ML-based production control, and approaches for explaining decisions made by reinforcement learning (RL) algorithms. With the help of MARL, short reaction time and high decision quality can be realized. Subsequently, the developed MARL system is combined with methods from the field of explainable Artificial Intelligence (XAI) to increase the users’ trust. The use case results show that with the help of the developed system, rule-based controls, which are often used in industry, can be outperformed while providing explainable decisions.
Lizenzbestimmungen: CC BY 3.0 DE
Publikationstyp: BookPart
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2022
Die Publikation erscheint in Sammlung(en):Proceedings CPSL 2022
Proceedings CPSL 2022

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 404 57,80%
2 image of flag of United States United States 50 7,15%
3 image of flag of United Kingdom United Kingdom 30 4,29%
4 image of flag of Russian Federation Russian Federation 22 3,15%
5 image of flag of China China 14 2,00%
6 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 11 1,57%
7 image of flag of Spain Spain 11 1,57%
8 image of flag of Czech Republic Czech Republic 11 1,57%
9 image of flag of Italy Italy 10 1,43%
10 image of flag of Japan Japan 9 1,29%
    andere 127 18,17%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.