Modular Software Architecture for interfacing Online Scheduling Agents with Assembly Planning and Control Systems

Download statistics - Document (COUNTER):

Göppert, A.; Rachner, J.; Kaven, L.; Schmitt, R.H.: Modular Software Architecture for interfacing Online Scheduling Agents with Assembly Planning and Control Systems. In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics: CPSL 2022. Hannover : publish-Ing., 2022, S. 206-216. DOI: https://doi.org/10.15488/12134

Selected time period:

year: 
month: 

Sum total of downloads: 154




Thumbnail
Abstract: 
Production systems must be more resilient and adaptive due to mass customization and increasingly external disturbances, such as supply chain disruptions or changing policies. As the last chain in the production value stream, assembly systems are especially prone to fluctuations, leading to alternative and more flexible assembly system designs. Online scheduling is a crucial component for dynamically controlling a flexible assembly system. This work presents a modular software architecture that interfaces between online scheduling agents and control systems. A standardized data model of the assembly system allows for exchanging different scheduling agents during the planning or operation phase. Applications are benchmarking competing algorithms, validating scheduling results by comparison, and seamlessly substituting or updating scheduling algorithms. The standardized data model and interface on the assembly system side facilitate the transition between planning and operation. A simulation model can be interchanged with a control system without extra effort to integrate the control system's scheduling agents. Additionally, the modular architecture enables production-parallel simulation to optimize the running system by evaluating and executing alternative scenarios. The long-term assembly system performance can profit from the modular architecture by updating the agent during production with advances in online scheduling algorithms (e.g., machine learning). Furthermore, the modular architecture enables the required resilience and adaptability by fast switching from simulation to real control systems and supporting system optimizations during operation.
License of this version: CC BY 3.0 DE
Document Type: BookPart
Publishing status: publishedVersion
Issue Date: 2022
Appears in Collections:Proceedings CPSL 2022

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 106 68.83%
2 image of flag of United States United States 10 6.49%
3 image of flag of China China 6 3.90%
4 image of flag of United Kingdom United Kingdom 4 2.60%
5 image of flag of Ireland Ireland 3 1.95%
6 image of flag of France France 3 1.95%
7 image of flag of Korea, Republic of Korea, Republic of 2 1.30%
8 image of flag of Italy Italy 2 1.30%
9 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 2 1.30%
10 image of flag of Australia Australia 2 1.30%
    other countries 14 9.09%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse