Optimizing the Solar Cell Front Side Metallization and the Cell Interconnection for High Module Power Output

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Witteck, R.; Schulte-Huxel, H.; Holst, H.; Hinken, D.; Vogt, M.; Blankemeyer, S.; Köntges, M.; Bothe, K.; Brendel, R.: Optimizing the Solar Cell Front Side Metallization and the Cell Interconnection for High Module Power Output. In: Energy Procedia 92 (2016), S. 531-539. DOI: https://doi.org/10.1016/j.egypro.2016.07.137

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1199

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 667




Kleine Vorschau
Zusammenfassung: 
Improving the light trapping in a module results in an increase in the generated current. Consequently, an optimization of the front grid metallization of the cell is required for the best trade-off between series resistance, shading, and recombination losses. For this purpose, we combine ray tracing and electrical solar cell and module calculations that explicitly account for cell and module interactions. Our model bases on experimentally verified input parameters: We determine the electrical and optical properties of the front metal fingers of passivated emitter and rear cells (PERC). We show that the effective optical width of the front metal fingers in the module is significantly reduced by 54%. The optimized simulated module has 120 half-size PERC with 20.2% cell efficiency and has an output power of 295.2 W. This is achieved with an increased number of 120 front metal fingers per cell, four white-colored cell interconnection ribbons (CIR), and an increased cell spacing. Applying these optimized design changes to an experimental module we measure a module power output of 294.8 W and a cell-to-module (CTM) factor of 1.02. Measured and simulated power agree and the deviations in Voc, Isc and FF are less than 0.91%rel. We perform a module power gain analysis for the fabricated module and simulate a potential maximum module power of 374.1 W when including further improvements.
Lizenzbestimmungen: CC BY-NC-ND 4.0 Unported
Publikationstyp: Article
Erstveröffentlichung: 2016
Die Publikation erscheint in Sammlung(en):Fakultät für Mathematik und Physik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 499 74,81%
2 image of flag of United States United States 39 5,85%
3 image of flag of China China 17 2,55%
4 image of flag of Korea, Republic of Korea, Republic of 16 2,40%
5 image of flag of Turkey Turkey 9 1,35%
6 image of flag of Taiwan Taiwan 8 1,20%
7 image of flag of No geo information available No geo information available 6 0,90%
8 image of flag of Japan Japan 5 0,75%
9 image of flag of United Kingdom United Kingdom 5 0,75%
10 image of flag of Sweden Sweden 4 0,60%
    andere 59 8,85%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.