Carbon translocation from glacial and terrestrial to aqueous systems – characteristics and processing of dissolved organic matter in the endorheic Tibetan Lake Nam Co watershed

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Maurischat, Philipp: Carbon translocation from glacial and terrestrial to aqueous systems – characteristics and processing of dissolved organic matter in the endorheic Tibetan Lake Nam Co watershed. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2022, XIV, 190 S. DOI: https://doi.org/10.15488/11999

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 281




Kleine Vorschau
Zusammenfassung: 
The Tibetan Plateau (TP) comprises sensitive alpine environments such as grassland biomes. Climatic changes and intensifying land use threaten these ecosystems. Therefore, it is important to understand the response of ecosystems to changing biotic and abiotic factors. The translocation of dissolved organic matter from glacial and terrestrial to aqueous systems is an important aspect of this response, specifically when characterizing changing conditions of freshwater resources and sensitive limnic ecosystems on the TP. Via changes in its chemical composition, characteristics, transformation and processing of DOM can be tracked. Three catchments of the Nam Co watershed of the TP (Niyaqu, Qugaqie and Zhagu) and the lake were investigated to understand how site specific terrestrial processes and seasonality affect the composition of DOM and alteration of organic compounds in streams and the lake of this endorheic basin. Four hypotheses were tested: H1 The natural diversity in the Nam Co watershed controls site specific effects on DOM composition. H2 Seasonal effects on DOM composition are driven by warm and moist summers influenced from the Indian summer monsoon (ISM) and cold and dry winters. H3/ H4a Site specific effects on DOM diminish by means of biological decomposition and photooxidation of DOM during the stream path / in the lake. Alongside H4b organic matter of the Nam Co Lake is independent from catchment influences, given by an autochthonous source of DOM.A multi-parameter approach was applied, consitsing of water chemistry parameters (pH, electric conductivity, cations and anions, dissolved inorganic carbon), concentration of dissolved organic carbon (DOC), DOM characteristics (chromophoric DOM, fluorescence DOM and δ13C of DOM) and DOM ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Sampling was conducted for three seasons, freshet in 2018, the phase of the ISM in 2019 and post-ISM baseflow in 2019. Alongside a watershed-wide plant cover estimate was composed, to explore the link between differences in DOM characteristics and degree of green plant cover. Sampling covers stream water, as well as endmember samples such as: glacial effluents, water of springs and water from an alpine wetland. The lake was covered by sampling the brackish zone and the lake pelagial and the lake surface.The composition of DOM differed between the three endmember groups and between stream samples of catchments. Glaciers showed a dual DOM source, indicating a glacial microbiome and compounds derived from burned fossil fuels. Springs differed based on their geographic location. Upland waters showed limited inputs of alpine pastures: lowland springs displayed influences of yak faeces with microbial reworked DOM, indicated by less negative δ13C and nitrogen. Wetlands were distinguished by more eutrophic conditions by highest concentrations in DOC and high amounts in N-heteroatoms. Streams were site specific with input sources derived from glaciers, wetlands, groundwater, intense animal husbandry and a plant-derived phenolic signature from alpine pastures aligned to the degree of plant cover. Seasonality affected DOM characteristics in stream water. During freshet, DOM was plant-derived, as was during baseflow conditions. A flush of dissolved organic carbon, accompanied by a compositional shift towards more microbial derived DOM was observed during the ISM season.Processing of DOM in streams was limited to the biolabile fraction of DOM of the glacial biome. Transformation of DOM was overruled by the constant input of plant derived phenolic DOM compounds from alpine pastures. Consequentially, the brackish intermixing zone showed the inflow of terrestrial DOM into the lake. In contrast, lake water exhibited distinct DOM characteristics, by lowest amounts in aromatic molecular compounds and DOM rich in 13C. This suggested intense processing of phenolic, terrestrial derived DOM by photooxidation, as well as a seasonally stable autochthonous DOM source derived from algae and microorganisms in lake water. In conclusion, DOM characteristics are largely influenced by local endmembers such as glaciers, springs and wetlands. Seasonality shows that shifts in the onset, and changes in the intensity of the ISM can largely modify DOM composition. Processing of DOM took place mainly in the lake. The study revealed that DOM is suited to function as a monitoring agent in this lake watershed. Hence, DOM is a helpful tool to understand changes in ecosystems, and forthcoming, to safeguard sensitive ecosystems of the TP.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2022
Die Publikation erscheint in Sammlung(en):Naturwissenschaftliche Fakultät
Dissertationen

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 116 41,28%
2 image of flag of United States United States 44 15,66%
3 image of flag of China China 23 8,19%
4 image of flag of Russian Federation Russian Federation 18 6,41%
5 image of flag of Czech Republic Czech Republic 14 4,98%
6 image of flag of Hong Kong Hong Kong 10 3,56%
7 image of flag of France France 8 2,85%
8 image of flag of Korea, Republic of Korea, Republic of 5 1,78%
9 image of flag of United Kingdom United Kingdom 5 1,78%
10 image of flag of Switzerland Switzerland 4 1,42%
    andere 34 12,10%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.