Roth, J.; Schröder, M.; Wick, T.: Neural network guided adjoint computations in dual weighted residual error estimation. In: SN applied sciences 4 (2022), Nr. 2, 62. DOI: https://doi.org/10.1007/s42452-022-04938-9
Abstract: | |
In this work, we are concerned with neural network guided goal-oriented a posteriori error estimation and adaptivity using the dual weighted residual method. The primal problem is solved using classical Galerkin finite elements. The adjoint problem is solved in strong form with a feedforward neural network using two or three hidden layers. The main objective of our approach is to explore alternatives for solving the adjoint problem with greater potential of a numerical cost reduction. The proposed algorithm is based on the general goal-oriented error estimation theorem including both linear and nonlinear stationary partial differential equations and goal functionals. Our developments are substantiated with some numerical experiments that include comparisons of neural network computed adjoints and classical finite element solutions of the adjoints. In the programming software, the open-source library deal.II is successfully coupled with LibTorch, the PyTorch C++ application programming interface. | |
License of this version: | CC BY 4.0 Unported |
Document Type: | Article |
Publishing status: | publishedVersion |
Issue Date: | 2022 |
Appears in Collections: | Fakultät für Mathematik und Physik |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
Germany | 82 | 53.59% |
2 | ![]() |
United States | 21 | 13.73% |
3 | ![]() |
China | 6 | 3.92% |
4 | ![]() |
No geo information available | 4 | 2.61% |
5 | ![]() |
Iran, Islamic Republic of | 4 | 2.61% |
6 | ![]() |
Indonesia | 4 | 2.61% |
7 | ![]() |
Thailand | 3 | 1.96% |
8 | ![]() |
Netherlands | 3 | 1.96% |
9 | ![]() |
France | 3 | 1.96% |
10 | ![]() |
Italy | 2 | 1.31% |
other countries | 21 | 13.73% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.