Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions

Download statistics - Document (COUNTER):

Dietrich, J.; Schumann, A.H.; Redetzky, M.; Walther, J.; Denhard, M. et al.: Assessing uncertainties in flood forecasts for decision making: prototype of an operational flood management system integrating ensemble predictions. In: Natural Hazards and Earth System Sciences 9 (2009), Nr. 4, S. 1529-1540. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 340

Ensemble forecasts aim at framing the uncertainties of the potential future development of the hydro-meteorological situation. A probabilistic evaluation can be used to communicate forecast uncertainty to decision makers. Here an operational system for ensemble based flood forecasting is presented, which combines forecasts from the European COSMO-LEPS, SRNWP-PEPS and COSMO-DE prediction systems. A multi-model lagged average super-ensemble is generated by recombining members from different runs of these meteorological forecast systems. A subset of the super-ensemble is selected based on a priori model weights, which are obtained from ensemble calibration. Flood forecasts are simulated by the conceptual rainfall-runoff-model ArcEGMO. Parameter uncertainty of the model is represented by a parameter ensemble, which is a priori generated from a comprehensive uncertainty analysis during model calibration. The use of a computationally efficient hydrological model within a flood management system allows us to compute the hydro-meteorological model chain for all members of the sub-ensemble. The model chain is not re-computed before new ensemble forecasts are available, but the probabilistic assessment of the output is updated when new information from deterministic short range forecasts or from assimilation of measured data becomes available. For hydraulic modelling, with the desired result of a probabilistic inundation map with high spatial resolution, a replacement model can help to overcome computational limitations. A prototype of the developed framework has been applied for a case study in the Mulde river basin. However these techniques, in particular the probabilistic assessment and the derivation of decision rules are still in their infancy. Further research is necessary and promising.
License of this version: CC BY 3.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2009
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 217 63.82%
2 image of flag of United States United States 24 7.06%
3 image of flag of United Kingdom United Kingdom 19 5.59%
4 image of flag of France France 11 3.24%
5 image of flag of India India 7 2.06%
6 image of flag of China China 7 2.06%
7 image of flag of Australia Australia 7 2.06%
8 image of flag of Portugal Portugal 6 1.76%
9 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 6 1.76%
10 image of flag of Nepal Nepal 4 1.18%
    other countries 32 9.41%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository