Publishing machine actionable reproducible scholarly knowledge

Download statistics - Document (COUNTER):

Ganfoud, Anouar: Publishing machine actionable reproducible scholarly knowledge. Hannover : Gottfried Wilhelm Leibniz Universität Hannover, Master Thesis, 2021, IX, 103 S. DOI: https://doi.org/10.15488/11536

Selected time period:

year: 
month: 

Sum total of downloads: 439




Thumbnail
Abstract: 
Scientific research faces many challenges related to the credibility of published results. In essence, there is typically not enough documentation on how experiments are conducted and data is generated. Thus, increasing the reliability of articles through reproducibility will improve the quality of the published scientific literature and others better reliable results. This thesis describes today's problem of the research literature related to non-reproducibility and unstructured data such as weak experiments designs, errors, data dredging and under-specified methods. We suggest a variety of solutions to resolve these problems through linking machine readability with the reproducibility of the information in academic papers. We use therefore a knowledge platform which provides reproducibility on one side and on the other side another platform that ensures the machine actionability of data. Then, we build an integration between them and test it on a selected use case article. After establishing the integration, we obtained, as a result, a reproducible article described in machine-actionable and structured manner. Thereafter, we created a solution that allow every reader to switch between the static and dynamic (reproducible and machine-readable) form of the article. This thesis discusses the benefits and limitations of these observed results and emphasizes the future alternatives.
License of this version: CC BY 3.0 DE
Document Type: MasterThesis
Publishing status: publishedVersion
Issue Date: 2021-05-09
Appears in Collections:Fakultät für Elektrotechnik und Informatik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 122 27.79%
2 image of flag of Germany Germany 109 24.83%
3 image of flag of No geo information available No geo information available 53 12.07%
4 image of flag of Russian Federation Russian Federation 24 5.47%
5 image of flag of China China 17 3.87%
6 image of flag of Czech Republic Czech Republic 14 3.19%
7 image of flag of United Kingdom United Kingdom 10 2.28%
8 image of flag of Canada Canada 8 1.82%
9 image of flag of Netherlands Netherlands 5 1.14%
10 image of flag of France France 5 1.14%
    other countries 72 16.40%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse