Cognitive approaches and optical multispectral data for semi-automated classification of landforms in a rugged mountainous area

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Camargo, F. F.; Almeida, C. M.; Costa, G. A. O. P.; Feitosa, R. Q.; Oliveira, D. A. B. et al.: Cognitive approaches and optical multispectral data for semi-automated classification of landforms in a rugged mountainous area. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: [Geobia 2010: Geographic Object-Based Image Analysis] 38-4 (2010), Nr. C7

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1127

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 58




Kleine Vorschau
Zusammenfassung: 
This paper introduces a new open source, knowledge-based framework for automatic interpretation of remote sensing images, called InterIMAGE. This framework owns a flexible modular architecture, in which image processing operators can be associated to both root and leaf nodes of the semantic network, which constitutes a differential strategy in comparison to other object-based image analysis platforms currently available. The architecture, main features as well as an overview on the interpretation strategy implemented in InterIMAGE is presented. The paper also reports an experiment on the classification of landforms. Different geomorphometric and textural attributes obtained from ASTER/Terra images were combined with fuzzy logic and drove the interpretation semantic network. Object-based statistical agreement indices, estimated from a comparison between the classified scene and a reference map, were used to assess the classification accuracy. The InterIMAGE interpretation strategy yielded a classification result with strong agreement and proved to be effective for the extraction of landforms.
Lizenzbestimmungen: CC BY 3.0
Publikationstyp: article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2010
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 52 89,66%
2 image of flag of United States United States 2 3,45%
3 image of flag of Norway Norway 2 3,45%
4 image of flag of Mexico Mexico 1 1,72%
5 image of flag of India India 1 1,72%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Suche im Repositorium


Durchblättern