Automatic road network extraction in suburban areas from high resolution aerial images

Download statistics - Document (COUNTER):

Grote, Anne; Rottensteiner, Franz: Automatic road network extraction in suburban areas from high resolution aerial images. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: [PCV 2010 - Photogrammetric Computer Vision And Image Analysis, Pt I] 38 (2010), Nr. Part 3A, S. 299-304

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/1123

Selected time period:

year: 
month: 

Sum total of downloads: 60




Thumbnail
Abstract: 
In this paper a road network extraction algorithm for suburban areas is presented. The algorithm uses colour infrared (CIR) images and digital surface models (DSM). The CIR data allow a good separation between vegetation and roads. The image is first segmented in two steps: an initial segmentation using the normalized cuts algorithm and a subsequent grouping of the segments. Road parts are extracted from the segments and then first connected locally to form subgraphs, because roads are often not extracted as a whole due to disturbances in their appearance. Subgraphs can contain several branches, which are resolved by a subsequent optimisation. The optimisation uses criteria describing the relations between the road parts as well as context objects such as trees, vehicles and buildings. The resulting road strings, represented by their centre lines, are then connected to a road network by searching for junctions at the ends of the roads. Small isolated roads are eliminated because they are likely to be false extractions. Results are presented for three image subsets coming from two different data sets, and a quantitative analysis of the completeness and correctness is shown from nine image subsets from the two data sets. The results show that the approach is suitable for the extraction of roads in suburban areas from aerial images.
License of this version: CC BY 3.0
Document Type: article
Publishing status: publishedVersion
Issue Date: 2010
Appears in Collections:Fakultät für Bauingenieurwesen und Geodäsie

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 57 95.00%
2 image of flag of No geo information available No geo information available 1 1.67%
3 image of flag of Singapore Singapore 1 1.67%
4 image of flag of Canada Canada 1 1.67%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse