Bretones Cassoli, B.; Hoffmann, F.; Metternich, J.: Comparison of AI-Based Business Models in Manufacturing: Case Studies on Predictive Maintenance. In: Herberger, D.; Hübner, M. (Eds.): Proceedings of the Conference on Production Systems and Logistics : CPSL 2021. Hannover : publish-Ing., 2021, S. 637-647. DOI: https://doi.org/10.15488/11286
Abstract: | |
Recent advances in Artificial Intelligence extend the boundaries of what machines can do in all industriesand business sectors. The economic potential to apply AI in manufacturing results in an increasing numberof companies striving to gain a competitive advantage through AI and move into new markets. In thiscontext, particular importance is given to the predictive maintenance of machines. Predictive maintenancepromises the possibility of avoiding unexpected machine downtimes and thus increasing the availability ofproduction lines. However, only a few machine manufacturers have a marketable offering of AI-basedproducts or services in their portfolio. Even if technical feasibility is proven, companies lack anunderstanding of how to integrate AI solutions into new Business Models. This paper thus presents threecase studies and their Business Models as examples. Practical considerations and recommendations on thestrategical adoption of predictive maintenance technologies are derived. | |
License of this version: | CC BY 3.0 DE |
Document Type: | BookPart |
Publishing status: | publishedVersion |
Issue Date: | 2021 |
Appears in Collections: | Proceedings CPSL 2021 Proceedings CPSL 2021 |
pos. | country | downloads | ||
---|---|---|---|---|
total | perc. | |||
1 | ![]() |
Germany | 336 | 46.03% |
2 | ![]() |
United States | 85 | 11.64% |
3 | ![]() |
India | 35 | 4.79% |
4 | ![]() |
No geo information available | 18 | 2.47% |
5 | ![]() |
Sweden | 15 | 2.05% |
6 | ![]() |
United Kingdom | 15 | 2.05% |
7 | ![]() |
Iran, Islamic Republic of | 14 | 1.92% |
8 | ![]() |
Vietnam | 13 | 1.78% |
9 | ![]() |
France | 11 | 1.51% |
10 | ![]() |
Egypt | 11 | 1.51% |
other countries | 177 | 24.25% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.