Customizable 3D-printed (Co-)cultivation systems for in vitro study of angiogenesis

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Siller, I.G.; Epping, N.-M.; Lavrentieva, A.; Scheper, T.; Bahnemann, J.: Customizable 3D-printed (Co-)cultivation systems for in vitro study of angiogenesis. In: Materials 13 (2020), Nr. 19, 4290. DOI: https://doi.org/10.3390/ma13194290

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/11069

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 90




Kleine Vorschau
Zusammenfassung: 
Due to the ever-increasing resolution of 3D printing technology, additive manufacturing is now even used to produce complex devices for laboratory applications. Personalized experimental devices or entire cultivation systems of almost unlimited complexity can potentially be manufactured within hours from start to finish—an enormous potential for experimental parallelization in a highly controllable environment. This study presents customized 3D-printed co-cultivation systems, which qualify for angiogenesis studies. In these systems, endothelial and mesenchymal stem cells (AD-MSC) were indirectly co-cultivated—that is, both cell types were physically separated through a rigid, 3D-printed barrier in the middle, while still sharing the same cell culture medium that allows for the exchange of signalling molecules. Biochemical-based cytotoxicity assays initially confirmed that the 3D printing material does not exert any negative effects on cells. Since the material also enables phase contrast and fluorescence microscopy, the behaviour of cells could be observed over the entire cultivation via both. Microscopic observations and subsequent quantitative analysis revealed that endothelial cells form tubular-like structures as angiogenic feature when indirectly co-cultured alongside AD-MSCs in the 3D-printed co-cultivation system. In addition, further 3D-printed devices are also introduced that address different issues and aspire to help in varying experimental setups. Our results mark an important step forward for the integration of customized 3D-printed systems as self-contained test systems or equipment in biomedical applications. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2020
Die Publikation erscheint in Sammlung(en):Naturwissenschaftliche Fakultät

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 56 62,22%
2 image of flag of United States United States 15 16,67%
3 image of flag of No geo information available No geo information available 8 8,89%
4 image of flag of China China 5 5,56%
5 image of flag of Austria Austria 2 2,22%
6 image of flag of Taiwan Taiwan 1 1,11%
7 image of flag of Indonesia Indonesia 1 1,11%
8 image of flag of Hong Kong Hong Kong 1 1,11%
9 image of flag of Canada Canada 1 1,11%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.