Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Idel, Alexander: Entanglement for atom interferometers. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2021, x, 101 S. DOI: https://doi.org/10.15488/11060

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 462




Kleine Vorschau
Zusammenfassung: 
Quantum Sensors, like atom interferometers (AI), can be employed forhigh-precision measurements of inertial forces, including their applicationas gravimeters, gradiometers, accelerometers, and gyroscopes.Their measurement principle relies on ultracold atoms that are preparedin quantum-mechanical superposition states in external degreesof freedom. These states can be prepared by a momentum transfer ofa Raman laser. Then the superposition state senses the effect of an inertialforce, which induce a corresponding relative phase. The phase isread out by a final coupling which converts the interferometric phaseinto a atom number difference between the two states. The differenceprovides an estimate of the interferometric phase and the correspondingquantity of interest. The quantum mechanical noise of the atomicensemble cause a fundamental uncertainty of this estimation, which Ianalyze for generic AIs. For small atomic densities, the quantum phasenoise of the ensemble limits the interferometric sensitivity. For largedensities, quantum number fluctuations generate density fluctuations,which generates phase noise. I show that these two competing effectsresult in an optimal atom number with a maximal interferometer resolution.Squeezed atomic samples allow for a reduction of the quantumnoise of one quantity at the expense of an increased noise along of aconjugate quantity. Phase and number are such quantities which obeyto a variant of Heisenberg’s uncertainty principle. Neither phase nornumber squeezing can improve the maximal interferometer resolution.As one main result of this thesis, I show how an optimal squeezingin between number and phase squeezing, allows for a fundamentalimprovement. I evaluate possible experimental paths to implementthe proposed protocol.Concepts for a squeezing-enhanced operation of external-degreeAIs have not yet been demonstrated. I propose and implement anatomic gravimeter, which is designed to accept spin-squeezed atomicstates as input states. The interferometer is designed such that theinterferometer couplings are performed in spin space, while the phaseaccumulation is performed in momentum states. For this interferometer,the squeezed input can be directly obtained from spin dynamicsin spinor Bose-Einstein condensates. The main noise contributions inthe experiment are analyzed, which results in a factor of 84 abovethe relevant quantum limit, preventing a squeezing enhancement sofar. I outline a suppression of the main noise source, uncontrolledAC Stark shift on the squeezed mode and propose future importantapplications, including test of spontaneous collapse theories and animprovement of large-scale, high-precision gradiometers.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2021
Die Publikation erscheint in Sammlung(en):Dissertationen
QUEST-Leibniz-Forschungsschule

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 183 39,61%
2 image of flag of China China 97 21,00%
3 image of flag of United States United States 59 12,77%
4 image of flag of India India 21 4,55%
5 image of flag of Korea, Republic of Korea, Republic of 10 2,16%
6 image of flag of Italy Italy 10 2,16%
7 image of flag of France France 10 2,16%
8 image of flag of Austria Austria 8 1,73%
9 image of flag of Russian Federation Russian Federation 7 1,52%
10 image of flag of Japan Japan 7 1,52%
    andere 50 10,82%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.