Multi-source multi-scale hierarchical conditional random field model for remote sensing image classification

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Zhang, Z.; Yang, M. Y.; Zhou, M.: Multi-source multi-scale hierarchical conditional random field model for remote sensing image classification. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-3 (2015), Nr. W4, S. 293-300. DOI: https://doi.org/10.5194/isprsannals-II-3-W4-293-2015

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/1080

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 53




Kleine Vorschau
Zusammenfassung: 
Fusion of remote sensing images and LiDAR data provides complimentary information for the remote sensing applications, such as object classification and recognition. In this paper, we propose a novel multi-source multi-scale hierarchical conditional random field (MSMSH-CRF) model to integrate features extracted from remote sensing images and LiDAR point cloud data for image classification. MSMSH-CRF model is then constructed to exploit the features, category compatibility of multi-scale images and the category consistency of multi-source data based on the regions. The output of the model represents the optimal results of the image classification. We have evaluated the precision and robustness of the proposed method on airborne data, which shows that the proposed method outperforms standard CRF method.
Lizenzbestimmungen: CC BY 3.0
Publikationstyp: article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2015
Die Publikation erscheint in Sammlung(en):Fakultät für Elektrotechnik und Informatik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 36 67,92%
2 image of flag of China China 10 18,87%
3 image of flag of United States United States 1 1,89%
4 image of flag of Russian Federation Russian Federation 1 1,89%
5 image of flag of Pakistan Pakistan 1 1,89%
6 image of flag of Mexico Mexico 1 1,89%
7 image of flag of Italy Italy 1 1,89%
8 image of flag of Indonesia Indonesia 1 1,89%
9 image of flag of Hong Kong Hong Kong 1 1,89%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Suche im Repositorium


Durchblättern