Event generation for probabilistic flood risk modelling: Multi-site peak flow dependence model vs. weather-generator-based approach

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Winter, B.; Schneeberger, K.; Förster, K.; Vorogushyn, S.: Event generation for probabilistic flood risk modelling: Multi-site peak flow dependence model vs. weather-generator-based approach. In: Natural Hazards and Earth System Sciences 20 (2020), Nr. 6, S. 1689-1703. DOI: https://doi.org/10.5194/nhess-20-1689-2020

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/10942

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 11




Kleine Vorschau
Zusammenfassung: 
Flood risk assessment is an important prerequisite for risk management decisions. To estimate the risk, i.e. the probability of damage, flood damage needs to be either systematically recorded over a long period or modelled for a series of synthetically generated flood events. Since damage records are typically rare, time series of plausible, spatially coherent event precipitation or peak discharges need to be generated to drive the chain of process models. In the present study, synthetic flood events are generated by two different approaches to modelling flood risk in a meso-scale alpine study area (Vorarlberg, Austria). The first approach is based on the semi-conditional multi-variate dependence model applied to discharge series. The second approach relies on the continuous hydrological modelling of synthetic meteorological fields generated by a multi-site weather generator and using an hourly disaggregation scheme. The results of the two approaches are compared in terms of simulated spatial patterns of peak discharges and overall flood risk estimates. It could be demonstrated that both methods are valid approaches for risk assessment with specific advantages and disadvantages. Both methods are superior to the traditional assumption of a uniform return period, where risk is computed by assuming a homogeneous return period (e.g. 100-year flood) across the entire study area. © Author(s) 2020.
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2020
Die Publikation erscheint in Sammlung(en):Fakultät für Bauingenieurwesen und Geodäsie

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 9 81,82%
2 image of flag of Hungary Hungary 2 18,18%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.