Mechanical properties and formability of en AW-7075 in cold forming processes

Download statistics - Document (COUNTER):

Behrens, B.-A.; Hübner, S.; Vogt, H.; Golovko, O.; Behrens, S. et al.: Mechanical properties and formability of en AW-7075 in cold forming processes. In: International Deep-Drawing Research Group (IDDRG 2020) 26-30 October 2020, Seoul, South Korea. London [u.a.] : Institute of Physics, 2020 (IOP Conference Series : Materials Science and Engineering ; 967), 012017. DOI:

Repository version

To cite the version in the repository, please use this identifier:

Selected time period:


Sum total of downloads: 9

Due to a low density and high tensile strength, the aluminum alloy EN AW 7075 T6 offers a high lightweight potential for structural components. Since its formability is limited at room temperature in the T6 temper state, the potential of this alloy for automotive bodies is only utilizable by adapted deep drawing processes. In recent years, process chains suited for warm and hot forming have been researched and developed. However, warm and hot forming solutions require additional process steps and a complex tooling system in comparison to cold forming processes. Alternatively, the forming of such blanks at room temperature in the W temper state is favorable since conventional tools can be used. The W temper state is a heat treatment condition achieved after solution heat treatment and subsequent quenching, which is characterized by an increased ductility. However, this condition is unstable, due to the onset of natural ageing. With increasing time after the quenching step, the strength of the material increases, which leads to a reduction of formability. Another phenomenon that occurs after quenching is the Portevin Le-Chatelier effect. This effect causes the formation of flow lines during cold forming and results in a decrease of ductility. Hence, the objective of the investigations was to determine the formability of EN AW 7075 as a function of the natural ageing time after solution heat treatment and quenching. Therefore, tensile tests of various aged samples were carried out. The results show a relation of the formability to the natural ageing time and a dependency on the quenching rate. Furthermore, a heat treatment strategy for EN AW-7075 was developed, that considers manufacturing processes like the cathodic dip coating. The influence of the quenching rate, ageing time and temperature as well as the influence of temperature of the paint baking process after the cathodic dip coating were considered. Therefore, a design of experiments and tensile tests were carried out. Thus, the deep drawing of EN AW-7075 at room temperature is particularly promoted. © 2020 Published under licence by IOP Publishing Ltd.
License of this version: CC BY 3.0 Unported
Document Type: bookPart
Publishing status: publishedVersion
Issue Date: 2020
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 8 88.89%
2 image of flag of United States United States 1 11.11%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository