Orometric methods in bounded metric data

Download statistics - Document (COUNTER):

Stubbemann, M.; Hanika, T.; Stumme, G.: Orometric methods in bounded metric data. In: Berthold, M.R.; Feelders, A.; Krempl, G. (Eds.): Advances in Intelligent Data Analysis XVIII : 18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020, Proceedings. Cham : Springer International Publishing, 2020 (Lecture notes in computer science ; 12080), S. 496-508. DOI: https://doi.org/10.1007/978-3-030-44584-3_39

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/10888

Selected time period:


Sum total of downloads: 58

A large amount of data accommodated in knowledge graphs (KG) is metric. For example, the Wikidata KG contains a plenitude of metric facts about geographic entities like cities or celestial objects. In this paper, we propose a novel approach that transfers orometric (topographic) measures to bounded metric spaces. While these methods were originally designed to identify relevant mountain peaks on the surface of the earth, we demonstrate a notion to use them for metric data sets in general. Notably, metric sets of items enclosed in knowledge graphs. Based on this we present a method for identifying outstanding items using the transferred valuations functions isolation and prominence. Building up on this we imagine an item recommendation process. To demonstrate the relevance of the valuations for such processes, we evaluate the usefulness of isolation and prominence empirically in a machine learning setting. In particular, we find structurally relevant items in the geographic population distributions of Germany and France. © 2020, The Author(s).
License of this version: CC BY 4.0 Unported
Document Type: BookPart
Publishing status: publishedVersion
Issue Date: 2020
Appears in Collections:Forschungszentren

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of United States United States 22 37.93%
2 image of flag of Germany Germany 17 29.31%
3 image of flag of China China 7 12.07%
4 image of flag of Russian Federation Russian Federation 4 6.90%
5 image of flag of No geo information available No geo information available 1 1.72%
6 image of flag of Taiwan Taiwan 1 1.72%
7 image of flag of Singapore Singapore 1 1.72%
8 image of flag of India India 1 1.72%
9 image of flag of Canada Canada 1 1.72%
10 image of flag of Austria Austria 1 1.72%
    other countries 2 3.45%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository