Evaluation of Different Processor Architecture Organizations for On-Site Electronics in Harsh Environments

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Gesper, S.; Weißbrich, M.; Stuckenberg, T.; Jääskeläinen, P.; Blume, H. et al.: Evaluation of Different Processor Architecture Organizations for On-Site Electronics in Harsh Environments. In: International Journal of Parallel Programming 49 (2021), S. 541-569. DOI: https://doi.org/10.1007/s10766-020-00686-8

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/10727

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 436




Kleine Vorschau
Zusammenfassung: 
Microcontrollers to be used in harsh environmental conditions, e.g., at high temperatures or radiation exposition, need to be fabricated in robust technology nodes in order to operate reliably. However, these nodes are considerably larger than cutting-edge semiconductor technologies and provide less speed, drastically reducing system performance. In order to achieve low silicon area costs, low power consumption and reasonable performance, the processor architecture organization itself is a major influential design point. Parameters like data path width, instruction execution paradigm, code density, memory requirements, advanced control flow mechanisms etc., may have large effects on the design constraints. Application characteristics, like exploitable data parallelism and required arithmetic operations, have to be considered in order to use the implemented processor resources efficiently. In this paper, a design space exploration of five different architectures with MIPS- or ARM-compatible instruction set architectures, as well as transport-triggered instruction execution is presented. Using a 0.18 µ m SOI CMOS technology for high temperature and an exemplary case study from the fields of communication, i.e., powerline communication encoder, the influence of architectural parameters on performance and hardware efficiency is compared. For this application, a transport-triggered architecture configuration has an 8.5× higher performance and 2.4× higher computational energy efficiency at a 1.6× larger total silicon area than an off-the-shelf ARM Cortex-M0 embedded processor, showing the considerable range of design trade-offs for different architectures. © 2020, The Author(s).
Lizenzbestimmungen: CC BY 4.0 Unported
Publikationstyp: Article
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2021
Die Publikation erscheint in Sammlung(en):Fakultät für Elektrotechnik und Informatik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 113 25,92%
2 image of flag of India India 91 20,87%
3 image of flag of United States United States 57 13,07%
4 image of flag of Czech Republic Czech Republic 34 7,80%
5 image of flag of China China 17 3,90%
6 image of flag of Russian Federation Russian Federation 16 3,67%
7 image of flag of France France 12 2,75%
8 image of flag of Israel Israel 11 2,52%
9 image of flag of Philippines Philippines 8 1,83%
10 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 8 1,83%
    andere 69 15,83%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.