Otto, C.; Springstein, M.; Anand, A.; Ewerth, R.: Characterization and classification of semantic image-text relations. In: International Journal of Multimedia Information Retrieval 9 (2020), S. 31-45. DOI: https://doi.org/10.1007/s13735-019-00187-6
Zusammenfassung: | |
The beneficial, complementary nature of visual and textual information to convey information is widely known, for example, in entertainment, news, advertisements, science, or education. While the complex interplay of image and text to form semantic meaning has been thoroughly studied in linguistics and communication sciences for several decades, computer vision and multimedia research remained on the surface of the problem more or less. An exception is previous work that introduced the two metrics Cross-Modal Mutual Information and Semantic Correlation in order to model complex image-text relations. In this paper, we motivate the necessity of an additional metric called Status in order to cover complex image-text relations more completely. This set of metrics enables us to derive a novel categorization of eight semantic image-text classes based on three dimensions. In addition, we demonstrate how to automatically gather and augment a dataset for these classes from the Web. Further, we present a deep learning system to automatically predict either of the three metrics, as well as a system to directly predict the eight image-text classes. Experimental results show the feasibility of the approach, whereby the predict-all approach outperforms the cascaded approach of the metric classifiers. © 2020, The Author(s). | |
Lizenzbestimmungen: | CC BY 4.0 Unported |
Publikationstyp: | Article |
Publikationsstatus: | publishedVersion |
Erstveröffentlichung: | 2020 |
Die Publikation erscheint in Sammlung(en): | Forschungszentren |
Pos. | Land | Downloads | ||
---|---|---|---|---|
Anzahl | Proz. | |||
1 | ![]() |
Germany | 52 | 32,91% |
2 | ![]() |
United States | 42 | 26,58% |
3 | ![]() |
China | 7 | 4,43% |
4 | ![]() |
Vietnam | 6 | 3,80% |
5 | ![]() |
Europe | 6 | 3,80% |
6 | ![]() |
United Kingdom | 5 | 3,16% |
7 | ![]() |
Serbia | 4 | 2,53% |
8 | ![]() |
Morocco | 4 | 2,53% |
9 | ![]() |
Jordan | 4 | 2,53% |
10 | ![]() |
Pakistan | 3 | 1,90% |
andere | 25 | 15,82% |
Hinweis
Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.