How Dynamic Boundary Conditions Induce Solute Trapping and Quasi-stagnant Zones in Laboratory Experiments Comprising Unsaturated Heterogeneous Porous Media

Download statistics - Document (COUNTER):

Cremer, C.J.M.; Neuweiler, I.: How Dynamic Boundary Conditions Induce Solute Trapping and Quasi-stagnant Zones in Laboratory Experiments Comprising Unsaturated Heterogeneous Porous Media. In: Water Resources Research 55 (2019), Nr. 12, S. 10765-10780. DOI: https://doi.org/10.1029/2018WR024470

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/10496

Selected time period:

year: 
month: 

Sum total of downloads: 47




Thumbnail
Abstract: 
The vadose zone is subject to dynamic boundary conditions in the form of infiltration and evaporation. A better understanding of implications for flow and solute transport, arising from these dynamic boundary conditions in combination with heterogeneous structure, will help to improve the prediction of the fate of solutes. We present laboratory experiments and numerical simulations of heterogeneous porous media under unsaturated conditions where controlled, temporally varying precipitation and evaporation are applied to study the effect of dynamic boundary conditions on solute transport in the presence of material interfaces. Dye tracers Eosine Y and Brilliant Blue FCF are utilized to visualize solute transport and analyze redistribution processes in a flow cell. Water and solute fluxes in and out of the flow cell are quantified. While in dynamic experiments application of small infiltration rates (significantly below the saturated hydraulic conductivities of the materials) led to a reversal of transport paths between infiltration and succeeding evaporation, larger infiltration rates altered downward transport such that flow and transport paths differed from those observed during evaporation. Differences in transport paths ultimately led to a redistribution and trapping of solute in one material which manifested as pronounced tailing in breakthrough curves. Trapping was induced not by the formation of a stagnant zone as result of large parameter contrast but by an interplay of dynamic boundary conditions and material heterogeneity. This study thereby highlights the importance to consider dynamic boundary conditions in predictions of solute leaching. © 2019. The Authors.
License of this version: CC BY 4.0 Unported
Document Type: Article
Publishing status: publishedVersion
Issue Date: 2019
Appears in Collections:Fakultät für Maschinenbau

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 26 55.32%
2 image of flag of United States United States 14 29.79%
3 image of flag of China China 5 10.64%
4 image of flag of Taiwan Taiwan 1 2.13%
5 image of flag of India India 1 2.13%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse