Wavefront predictions for the automated assembly of optical systems

Download statistics - Document (COUNTER):

Schindlbeck, C.; Pape, C.; Reithmeier, E.: Wavefront predictions for the automated assembly of optical systems. In: Proceedings of SPIE 10815 (2018), 108150B. DOI: https://doi.org/10.1117/12.2500000

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/10280

Selected time period:

year: 
month: 

Sum total of downloads: 30




Thumbnail
Abstract: 
Industrial assembly of optical systems is still a tedious and cost-intensive task that is mostly dominated by manual labor. Positional fine-adjustment of optical components is pivotal to ensure a desired performance of the optical device at hand. In this paper, we use wavefront predictions to aim for fully automated assembly procedures. Wavefront measurements along with position identification methods can be utilized to continuously update a simulation model which in turn allows for predictions on future wavefront errors. This enables to take according correction measures during the assembly process if a certain wavefront tolerance specification is not met. In order to demonstrate the efficacy of the proposed approach and methods, a beam expander is sequentially assembled. The setup consists of a laser, two bi-convex lenses, and a Shack-Hartmann wavefront sensor and has to satisfy a certain wavefront tolerance specification after its assembly. © 2018 SPIE.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Document Type: conferenceObject
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Fakultät für Elektrotechnik und Informatik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 17 56.67%
2 image of flag of United States United States 5 16.67%
3 image of flag of Poland Poland 2 6.67%
4 image of flag of United Kingdom United Kingdom 2 6.67%
5 image of flag of Czech Republic Czech Republic 2 6.67%
6 image of flag of China China 2 6.67%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse