Structured light sensor with telecentric stereo camera pair for measurements through vacuum windows

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Beermann, R.; Quentin, L.; Kästner, M.; Reithmeier, E.: Structured light sensor with telecentric stereo camera pair for measurements through vacuum windows. In: Proceedings of SPIE 11056 (2019), 1105614. DOI: https://doi.org/10.1117/12.2526049

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/10276

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 120




Kleine Vorschau
Zusammenfassung: 
Within the Collaborative Research Centre 1153 Tailored Forming a process chain is being developed to manufacture hybrid high performance components made from different materials. The optical geometry characterization of red-hot workpieces directly after the forming process yields diverse advantages, e.g., the documentation of workpiece distortion effects during cooling or the rejection of deficient components in an early manufacturing state. Challenges arise due to the high components temperature directly after forming (approximately 1000°C): The applied structured light method is based on the triangulation principle, which requires homogeneous measurement conditions and a rectilinear expansion of light. This essential precondition is violated when measuring hot objects, as the heat input into the surrounding air leads to an inhomogeneous refractive index field. The authors identified low pressure environments as a promising approach to reduce the magnitude and expansion of the heat induced optical inhomogeneity. To this end, a vacuum chamber has been developed at the Institute of Measurement and Automatic Control. One drawback of a measurement chamber is, that the geometry characterization has to be conducted through a chamber window. The sensors light path is therefore again affected - in this case by the window's discrete increase of refractive index, and also due to the different air density states at sensor location (density at ambient pressure conditions) and measurement object location (density at low pressure conditions). Unlike the heat induced deflection effect, the light path manipulation by the window and the manipulated air density state in the chamber are non-dynamic and constant over time. The reconstruction of 3D geometry points based on a structured light sensor measurement directly depends on the mathematical model of detection and illumination unit. The calibration routine yields the necessary sensor model parameters. The window light refraction complicates this calibration procedure, as the standard pinhole camera model used for entocentric lenses does not comprise enough degrees of freedom to adequately parametrize the pixel-dependent light ray shift induced by thick vacuum windows. Telecentric lenses only map parallel light onto a sensor, therefore the window induced ray shift is constant for all sensor pixels and can be directly reproduced by the so-called affine camera model. In this paper, we present an experimental calibration method, and corresponding calibration data and measurement results for a structured light sensor with and without measurement window. The sensor comprises a telecentric stereo camera pair and an entocentric projector. The calibration of the telecentric cameras is conducted according to the well-known affine camera model. The projector is used as feature generator to solve the correspondence problem between the two cameras. The calibration data illustrates that the window refraction effect is fully reproduced by the affine camera model, allowing a precise geometry characterization of objects recorded through windows. The presented approach is meant to be used with the aforementioned vacuum chamber to enable a geometry characterization of hot objects at low pressure levels.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Publikationstyp: BookPart
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2019
Die Publikation erscheint in Sammlung(en):Fakultät für Elektrotechnik und Informatik

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 46 38,33%
2 image of flag of United States United States 37 30,83%
3 image of flag of China China 8 6,67%
4 image of flag of Russian Federation Russian Federation 5 4,17%
5 image of flag of Korea, Republic of Korea, Republic of 5 4,17%
6 image of flag of Iran, Islamic Republic of Iran, Islamic Republic of 4 3,33%
7 image of flag of Taiwan Taiwan 3 2,50%
8 image of flag of No geo information available No geo information available 2 1,67%
9 image of flag of India India 2 1,67%
10 image of flag of Ireland Ireland 1 0,83%
    andere 7 5,83%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.