Robust direct vision-based pose tracking using normalized mutual information

Download statistics - Document (COUNTER):

Luo, H.; Pape, C.; Reithmeier, E.: Robust direct vision-based pose tracking using normalized mutual information. In: Proceedings of SPIE 10819 (2018), 108190T. DOI: https://doi.org/10.1117/12.2500857

Repository version

To cite the version in the repository, please use this identifier: https://doi.org/10.15488/10272

Selected time period:

year: 
month: 

Sum total of downloads: 36




Thumbnail
Abstract: 
This paper presents a novel visual tracking approach that combines the NMI metric and the traditional SSD metric within a gradient-based optimization frame, which can be used for direct visual odometry and SLAM. We firstly derivate the closed form expression for first- and second-order analytical NMI derivatives under the assumption of rigid-body transformations, which then can be used by subsequent Newton-like optimization methods. Then we develop a robust tracking scheme that utilizes the robustness of NMI metric while keeping the optimization characteristics of SSD-based Lucas-Kanade (LK) tracking methods. To validate the robustness and accuracy of the proposed approach, several experiments are performed on synthetic datasets as well as real image datasets. The experimental results demonstrate that our approach can provide fast, accurate pose estimation and obtain better tracking performance over standard SSD-based methods in most cases. © 2018 SPIE.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Document Type: article
Publishing status: publishedVersion
Issue Date: 2018
Appears in Collections:Fakultät für Elektrotechnik und Informatik

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 19 52.78%
2 image of flag of United States United States 5 13.89%
3 image of flag of France France 3 8.33%
4 image of flag of China China 3 8.33%
5 image of flag of Korea, Republic of Korea, Republic of 2 5.56%
6 image of flag of Canada Canada 2 5.56%
7 image of flag of United Kingdom United Kingdom 1 2.78%
8 image of flag of Czech Republic Czech Republic 1 2.78%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse