Deep-learning-based 2.5D flow field estimation for maximum intensity projections of 4D optical coherence tomography

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Laves, M.-H.; Ihler, S.; Kahrs, L.A.; Ortmaier, T.: Deep-learning-based 2.5D flow field estimation for maximum intensity projections of 4D optical coherence tomography. In: Proceedings of SPIE 10951 (2019), 109510R. DOI: https://doi.org/10.1117/12.2512952

Version im Repositorium

Zum Zitieren der Version im Repositorium verwenden Sie bitte diesen DOI: https://doi.org/10.15488/10257

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 123




Kleine Vorschau
Zusammenfassung: 
In microsurgery, lasers have emerged as precise tools for bone ablation. A challenge is automatic control of laser bone ablation with 4D optical coherence tomography (OCT). OCT as high resolution imaging modality provides volumetric images of tissue and foresees information of bone position and orientation (pose) as well as thickness. However, existing approaches for OCT based laser ablation control rely on external tracking systems or invasively ablated artificial landmarks for tracking the pose of the OCT probe relative to the tissue. This can be superseded by estimating the scene flow caused by relative movement between OCT-based laser ablation system and patient. Therefore, this paper deals with 2.5D scene flow estimation of volumetric OCT images for application in laser ablation. We present a semi-supervised convolutional neural network based tracking scheme for subsequent 3D OCT volumes and apply it to a realistic semi-synthetic data set of ex vivo human temporal bone specimen. The scene flow is estimated in a two-stage approach. In the first stage, 2D lateral scene flow is computed on census-transformed en-face arguments-of-maximum intensity projections. Subsequent to this, the projections are warped by predicted lateral flow and 1D depth flow is estimated. The neural network is trained semi-supervised by combining error to ground truth and the reconstruction error of warped images with assumptions of spatial flow smoothness. Quantitative evaluation reveals a mean endpoint error of (4.7 ± 3.5) voxel or (27.5 ± 20.5) μm for scene flow estimation caused by simulated relative movement between the OCT probe and bone. The scene flow estimation for 4D OCT enables its use for markerless tracking of mastoid bone structures for image guidance in general, and automated laser ablation control. © 2019 SPIE.
Lizenzbestimmungen: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden. Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
Publikationstyp: BookPart
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2019
Die Publikation erscheint in Sammlung(en):Fakultät für Maschinenbau

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 76 61,79%
2 image of flag of United States United States 22 17,89%
3 image of flag of China China 6 4,88%
4 image of flag of Russian Federation Russian Federation 3 2,44%
5 image of flag of France France 3 2,44%
6 image of flag of Canada Canada 3 2,44%
7 image of flag of Netherlands Netherlands 2 1,63%
8 image of flag of United Kingdom United Kingdom 2 1,63%
9 image of flag of Czech Republic Czech Republic 2 1,63%
10 image of flag of No geo information available No geo information available 1 0,81%
    andere 3 2,44%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.