Toeplitz operators and generated algebras on non-Hilbertian spaces

Download statistics - Document (COUNTER):

Fulsche, Robert: Toeplitz operators and generated algebras on non-Hilbertian spaces. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2020, viii, 198 S. DOI: https://doi.org/10.15488/10243

Selected time period:

year: 
month: 

Sum total of downloads: 166




Thumbnail
Abstract: 
In this thesis we study Toeplitz operators on spaces of holomorphic and pluriharmonic functions. The main part of the thesis is concerned with such operators on the p-Fock spaces of holomorphic functions for p ∈ [1, ∞].We establish a notion of Correspondence Theory between symbols and Toeplitz operators, based on extended notions of convolutions as developed by Reinhard Werner, which gives rise to many important results on Toeplitz operators and the algebras they generate. Here, we find new proofs for old theorems, extending them to a largerrange of values of p, and also provide entirely new results. We manage to include even the non-reflexive cases of p = 1, ∞ in our studies.Based on the notions of band-dominated and limit operators, we establish a general criterion for an operator in the Toeplitz algebra over the Fock space to be Fredholm: Such an operator is Fredholm if and only if all of its limit operators are invertible.As an example of a Toeplitz algebra over the Fock space, we study the Resolvent Algebra (in the sense of Detlev Buchholz and Hendrik Grundling) in its Fock space representation.Partially following the methods of Correspondence Theory as discussed in this thesis, we manage to extend a classical result on the boundedness of Toeplitz operators (the Berger-Coburn estimates) to the setting of p-Fock spaces.Also based on results derived from the Correspondence Theory, we discuss several new characterizations of the full Toeplitz algebra on Fock spaces, at least in the reflexive range p ∈ (1, ∞).In the last part, we discuss several results on spectral theory and quantization estimates for Toeplitz operators acting on Bergman and Fock spaces of pluriharmonic functions.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: doctoralThesis
Publishing status: publishedVersion
Issue Date: 2020
Appears in Collections:Fakultät für Mathematik und Physik
Dissertationen

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 93 56.02%
2 image of flag of United States United States 16 9.64%
3 image of flag of China China 13 7.83%
4 image of flag of Norway Norway 6 3.61%
5 image of flag of United Kingdom United Kingdom 5 3.01%
6 image of flag of Mexico Mexico 4 2.41%
7 image of flag of Australia Australia 4 2.41%
8 image of flag of Saudi Arabia Saudi Arabia 3 1.81%
9 image of flag of Iraq Iraq 3 1.81%
10 image of flag of Finland Finland 2 1.20%
    other countries 17 10.24%

Further download figures and rankings:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository


Browse