Computer vision reading on stickers and direct part marking on horticultural products : challenges and possible solutions

Download statistics - Document (COUNTER):

Eyahanyo, Felix Amenyo: Computer vision reading on stickers and direct part marking on horticultural products : challenges and possible solutions. Hannover : Gottfried Wilhelm Leibniz Universität Hannover, Diss., 2020, xii, 117 S. DOI:

Selected time period:


Sum total of downloads: 844

Traceability of products from production to the consumer has led to a technological advancement in product identification. There has been development from the use of traditional one-dimensional barcodes (EAN-13, Code 128, etc.) to 2D (two-dimensional) barcodes such as QR (Quick Response) and Data Matrix codes. Over the last two decades there has been an increased use of Radio Frequency Identification (RFID) and Direct Part Marking (DPM) using lasers for product identification in agriculture. However, in agriculture there are still considerable challenges to adopting barcodes, RFID and DPM technologies, unlike in industry where these technologies have been very successful. This study was divided into three main objectives. Firstly, determination of the effect of speed, dirt, moisture and bar width on barcode detection was carried out both in the laboratory and a flower producing company, Brandkamp GmbH. This study developed algorithms for automation and detection of Code 128 barcodes under rough production conditions. Secondly, investigations were carried out on the effect of low laser marking energy on barcode size, print growth, colour and contrast on decoding 2D Data Matrix codes printed directly on apples. Three different apple varieties (Golden Delicious, Kanzi and Red Jonaprince) were marked with various levels of energy and different barcode sizes. Image processing using Halcon 11.0.1 (MvTec) was used to evaluate the markings on the apples. Finally, the third objective was to evaluate both algorithms for 1D and 2D barcodes. According to the results, increasing the speed and angle of inclination of the barcode decreased barcode recognition. Also, increasing the dirt on the surface of the barcode resulted in decreasing the successful detection of those barcodes. However, there was 100% detection of the Code 128 barcode at the company’s production speed (0.15 m/s) with the proposed algorithm. Overall, the results from the company showed that the image-based system has a future prospect for automation in horticultural production systems. It overcomes the problem of using laser barcode readers. The results for apples showed that laser energy, barcode size, print growth, type of product, contrast between the markings and the colour of the products, the inertia of the laser system and the days of storage all singularly or in combination with each other influence the readability of laser Data Matrix codes and implementation on apples. There was poor detection of the Data Matrix code on Kanzi and Red Jonaprince due to the poor contrast between the markings on their skins. The proposed algorithm is currently working successfully on Golden Delicious with 100% detection for 10 days using energy 0.108 J mm-2 and a barcode size of 10 × 10 mm2. This shows that there is a future prospect of not only marking barcodes on apples but also on other agricultural products for real time production.
License of this version: Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.
Document Type: DoctoralThesis
Publishing status: publishedVersion
Issue Date: 2020
Appears in Collections:Naturwissenschaftliche Fakultät

distribution of downloads over the selected time period:

downloads by country:

pos. country downloads
total perc.
1 image of flag of Germany Germany 213 25.24%
2 image of flag of United States United States 131 15.52%
3 image of flag of Russian Federation Russian Federation 94 11.14%
4 image of flag of Czech Republic Czech Republic 59 6.99%
5 image of flag of China China 42 4.98%
6 image of flag of No geo information available No geo information available 31 3.67%
7 image of flag of India India 20 2.37%
8 image of flag of Hong Kong Hong Kong 17 2.01%
9 image of flag of Turkey Turkey 15 1.78%
10 image of flag of France France 15 1.78%
    other countries 207 24.53%

Further download figures and rankings:


Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.

Search the repository