Post-Newtonian Description of Quantum Systems in Gravitational Fields

Downloadstatistik des Dokuments (Auswertung nach COUNTER):

Schwartz, Philip Klaus: Post-Newtonian Description of Quantum Systems in Gravitational Fields. Hannover : Gottfried Wilhelm Leibniz Universität, Diss., 2020, xii, 133 S. DOI: https://doi.org/10.15488/10085

Zeitraum, für den die Download-Zahlen angezeigt werden:

Jahr: 
Monat: 

Summe der Downloads: 803




Kleine Vorschau
Zusammenfassung: 
This thesis deals with the systematic treatment of quantum-mechanical systems situated in post-Newtonian gravitational fields. At first, we develop a framework of geometric background structures that define the notions of a post-Newtonian expansion and of weak gravitational fields. Next, we consider the description of single quantum particles under gravity, before continuing with a simple composite system. Starting from clearly spelled-out assumptions, our systematic approach allows to properly derive the post-Newtonian coupling of quantum-mechanical systems to gravity based on first principles. This sets it apart from other, more heuristic approaches that are commonly employed, for example, in the description of quantum-optical experiments under gravitational influence.Regarding single particles, we compare simple canonical quantisation of a free particle in curved spacetime to formal expansions of the minimally coupled Klein–Gordon equation, which may be motivated from the framework of quantum field theory in curved spacetimes. Specifically, we develop a general WKB -like post-Newtonian expansion of the Klein–Gordon equation to arbitrary order in the inverse of the velocity of light. Furthermore, for stationary spacetimes, we show that the Hamiltonians arising from expansions of the Klein–Gordon equation and from canonical quantisation agree up to linear order in particle momentum, independent of any expansion in the inverse of the velocity of light.Concerning the topic of composite systems, we perform a fully detailed systematic derivation of the first order post-Newtonian quantum Hamiltonian describing the dynamics of an electromagnetically bound two-particle system which is situated in external electromagnetic and gravitational fields. This calculation is based on previous work by Sonnleitner and Barnett, which we significantly extend by the inclusion of a weak gravitational field as described by the Eddington–Robertson parametrised post-Newtonian metric.In the last, independent part of the thesis, we prove two uniqueness results characterising the Newton–Wigner position observable for Poincaré-invariant classical Hamiltonian systems: one is a direct classical analogue of the well-known quantum Newton–Wigner theorem, and the other clarifies the geometric interpretation of the Newton–Wigner position as ‘centre of spin’, as proposed by Fleming in 1965.
Lizenzbestimmungen: CC BY 3.0 DE
Publikationstyp: DoctoralThesis
Publikationsstatus: publishedVersion
Erstveröffentlichung: 2020
Die Publikation erscheint in Sammlung(en):Dissertationen
QUEST-Leibniz-Forschungsschule

Verteilung der Downloads über den gewählten Zeitraum:

Herkunft der Downloads nach Ländern:

Pos. Land Downloads
Anzahl Proz.
1 image of flag of Germany Germany 595 74,10%
2 image of flag of United States United States 58 7,22%
3 image of flag of China China 31 3,86%
4 image of flag of United Kingdom United Kingdom 12 1,49%
5 image of flag of Austria Austria 11 1,37%
6 image of flag of Italy Italy 10 1,25%
7 image of flag of Russian Federation Russian Federation 8 1,00%
8 image of flag of Netherlands Netherlands 8 1,00%
9 image of flag of India India 6 0,75%
10 image of flag of Spain Spain 6 0,75%
    andere 58 7,22%

Weitere Download-Zahlen und Ranglisten:


Hinweis

Zur Erhebung der Downloadstatistiken kommen entsprechend dem „COUNTER Code of Practice for e-Resources“ international anerkannte Regeln und Normen zur Anwendung. COUNTER ist eine internationale Non-Profit-Organisation, in der Bibliotheksverbände, Datenbankanbieter und Verlage gemeinsam an Standards zur Erhebung, Speicherung und Verarbeitung von Nutzungsdaten elektronischer Ressourcen arbeiten, welche so Objektivität und Vergleichbarkeit gewährleisten sollen. Es werden hierbei ausschließlich Zugriffe auf die entsprechenden Volltexte ausgewertet, keine Aufrufe der Website an sich.