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Zusammenfassung 

Eine gängige Methode zur Herstellung von Membranen ist das Fällbadverfahren. Dabei wird ein 

Polymer in einem geeigneten Lösungsmittel gelöst und anschließend in einem Fällbad mit einem 

geeigneten Nichtlösungsmittel wieder ausgefällt. Während dieses Prozesses findet eine 

Phasenseparation statt, die zur Ausbildung einer porösen Struktur führt. Diese poröse Struktur 

ermöglicht die selektive Trennung von Stoffgemischen nach dem Größenausschlussprinzip. Die zurzeit 

hierbei verwendeten Lösungsmittel haben den Nachteil, dass sie als bedenklich für Mensch und 

Umwelt eingestuft sind. Daher besteht ein großes Interesse darin, die konventionellen Lösungsmittel 

bei der Membranherstellung durch ungefährlichere Stoffe zu ersetzen. Die Herausforderung hierbei 

ist, dass trotz einer Lösungsmittelumstellung die Membraneigenschaften weiterhin kontrollierbar sein 

müssen. Um die Kontrolle der Eigenschaften durch die Anpassung der beeinflussenden Faktoren zu 

gewährleisten, ist deshalb ein gutes Verständnis des Prozesses nötig. 

Im ersten Teil der Arbeit wurde eine Methode zur Charakterisierung der Mischphasenthermodynamik 

von Polymerlösungen entwickelt. Im Zuge einer Validierung dieser Methode konnte gezeigt werden, 

dass die Methode verlässliche und reproduzierbare Daten liefert, welche im Vergleich zur bisher 

gängigen Methode einen höheren Informationsgehalt haben. Zudem wurde die Methode zur 

Charakterisierung eines gängigen Polymerlösungssystems zur Herstellung von Polymermembranen 

angewandt und die Ergebnisse mit denen der bisher verwendeten Trübungstitration verglichen. 

Im zweiten Teil dieser Arbeit wurde eine vergleichende Untersuchung des Einflusses von polymeren 

Additiven auf die Membranbildung und die resultierenden Membraneigenschaften durchgeführt. 

Dabei lag der Fokus insbesondere auf dem Vergleich zwischen konventionellen und alternativen 

Lösungsmitteln, um eine Umstellung auf umweltverträglichere Lösungsmittel zu ermöglichen. Es 

konnte gezeigt werden, dass es in Abhängigkeit des Lösungsmittels Unterschiede in den zu beobachten 

Effekten gibt. Jedoch können durch das erlangte mechanistische Verständnis Anpassungen im 

Herstellungsprozess vorgenommen werden, sodass die Membraneigenschaften kontrollierbar bleiben.  

Im dritten Teil dieser Arbeit wurden ebenfalls die Einflüsse verschiedener Parameter auf den 

Fällbadprozess mit verschiedenen Lösungsmitteln untersucht. Um ein Gesamtbild der Einflussfaktoren 

zu erhalten, wurden die Auswirkungen von verschiedenen Nichtlösungsmitteln in der Lösung sowie 

von unterschiedlichen Polymerkonzentrationen und Fällungsbedingungen untersucht. Es konnte 

gezeigt werden, dass alle drei Faktoren in den untersuchten Lösungsmitteln eine Auswirkung auf die 

Eigenschaften der hergestellten Membran haben. Zusätzlich konnte erneut demonstriert werden, dass 

die Wahl des Lösungsmittels eine große Auswirkung auf die Ausprägung der jeweiligen Effekte hat. 

Schlagwörter: Phasenseparation, Membranherstellung, alternative Lösungsmittel, Fällbadverfahren, 

Membraneigenschaften  
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Abstract 

A common method for the production of membranes is immersion precipitation. For this, a polymer is 

dissolved in a suitable solvent and then precipitated by immersing it into a precipitation bath consisting 

of a proper non-solvent. Induced by an exchange between the solvent and the non-solvent phase 

separation occurs, which leads to the formation of a porous structure. The resulting structure allows 

the selective separation of a mixture of substances, which is based on a size exclusion mechanism. At 

the moment, the disadvantage of the commonly used solvents for membrane fabrication is their 

classification as being hazardous for humans and the environment. This is the reason why there is an 

increased interest in replacing the conventional solvents by less harmful alternatives. However, the 

challenge is that despite changing the solvent, the membrane properties must still be controllable.  In 

order to ensure the required control of the resulting membrane properties by adjusting the influencing 

parameters, it is essential that the membrane fabrication process is well understood. 

In the first part of this work a method for the characterization of the thermodynamics of polymer 

solution phase equilibria was developed. In course of the validation of this method, it could be shown 

that the method provides reliable and reproducible data, which in comparison to the previously 

established method provides a higher information content. Furthermore, the method was applied for 

the characterization of a polymer solution system, which is commonly used for membrane preparation, 

and the results were compared to those of the previously used cloud point titration method.  

In the second part of this work a comparative study on the influences of polymeric additives on the 

membrane formation process and the resulting membrane properties was conducted. The focus was 

particularly laid on the comparison between conventional and alternative solvents in order to allow a 

substitution of hazardous solvents through less harmful alternatives. It could be shown that there are 

differences in the observed effects in dependence of the applied solvent. However, it could also be 

demonstrated that the gained mechanistic understanding can be used for adjusting the membrane 

preparation process, so that the properties of the fabricated membranes remain controllable.  

The third part of this work also focused on the influence of variations during the immersion 

precipitation process using different solvents. In order to obtain an overall picture of the influencing 

factors on membrane formation, the effects of non-solvent additives in the solution, of variations in 

the polymer concentration and of altered precipitation conditions were investigated. It could be shown 

that all three factors have an influence on the characteristics of the fabricated membranes in the 

investigated solvent systems. In addition, it was repeatedly demonstrated that the choice of the 

solvent is of high importance for the manifestation of the respective effects. 

Key words: Phase separation, membrane production, alternative solvents, immersion precipitation, 

membrane characteristics
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1 Introduction 

Nowadays, an increasing number of pharmaceuticals is manufactured by means of biotechnology. By 

definition, biotechnology is the use of living organisms, biological processes or biological system for 

the manufacturing of agricultural, industrial or medical products. Hence, any biotechnologically 

manufactured pharmaceuticals like antibodies, vaccines or biosynthetic proteins are derived from 

biological sources such as cell lines or blood plasma. For this reason, biopharmaceuticals have to be 

purified before use to remove any hazardous contaminants. Furthermore, the target molecule has to 

be concentrated and formulated into the final product form. Consequently, different methods are 

applied after the actual production step to concentrate, sterilize and finalize the product. Several of 

these purification steps involve the application of membranes. Especially for the removal of impurities 

and the concentration of the product polymeric membranes are frequently used.  

Polymeric membranes are filters made of synthetic polymers. They have a porous structure and are 

capable of separating mixtures of substances. This selective separation of particles is based on a sieving 

effect, so that the separation of different types of particles is dependent on the size of the membrane 

pores and the particles. Depending on the size of the product and the substances to be separated, the 

pore sizes have to be strictly controlled during membrane fabrication.  

For the production of polymeric membranes with various pore sizes different methods are available. 

However, one of the most commonly applied methods is the immersion precipitation process. In 

preparation for this process, a selected polymer is dissolved in a suitable solvent. Subsequently, the 

resulting homogeneous solution is applied to a support with a defined thickness and immersed into a 

precipitation bath consisting of an appropriate non-solvent. Through the exchange between the 

solvent from the polymer film and the non-solvent from the precipitation bath the composition of the 

polymer solution changes. When a certain composition is reached, the homogeneous solution 

separates into two phases, which finally leads to the formation of the porous membrane structure. 

One of the phases mainly consists of the polymer and is therefore responsible for the formation of the 

membrane matrix. In contrast, the other phase mainly consists of solvent and non-solvent and is 

responsible for the formation of the pores.  

The resulting membrane structure ultimately determines the properties of the membrane. The most 

important membrane characteristics include the flux rate, the separation efficiency for the molecule 

of interest, as well as the mechanical and chemical stability. All of these properties are dependent on 

the conditions during immersion precipitation and can be regulated by controlling the influencing 

variables. These include the precipitation conditions as well as the polymer solution composition. 
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As mentioned, in dependence on the application certain demands are placed on the membrane. In 

order to specifically obtain the required features, the control parameters during membrane fabrication 

have to be defined and the mechanisms behind them well understood. However, since the membrane 

formation process by immersion precipitation is very complex, it is still not fully understood and in 

some points even controversially discussed. Therefore, there is still a high need for improving the 

understanding of the membrane formation via immersion precipitation and its underlying mechanisms. 

Furthermore, as part of regulatory assessments of existing and new chemicals, the common solvents 

for membrane production have recently been classified as hazardous to humans and the environment. 

This is why there is an increased interest in replacing the existing solvents with less hazardous ones 

without changing the relevant membrane properties. Since each solvent has its individual properties, 

a one-by-one exchange is not possible. To hold the membrane properties constant when replacing the 

solvent, other control parameters have to be adjusted instead. This once again requires an excellent 

understanding of membrane formation and appropriate investigations on potentially new alternative 

solvents. 
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2 Scope of the Research 

The aim of this work is to gain an improved understanding of the mechanisms, which impact the 

membrane formation during immersion precipitation. In addition, the work shall contribute to the 

creation of a holistic picture on non-solvent induced membrane formation, which in particular includes 

the identification of the significant control parameters of the process and their mutual interaction. 

Since membrane formation via non-solvent induced phase separation is dependent on both, the 

thermodynamics of the polymer solution for the production of polymeric membranes and the kinetics 

of the solvent exchange in the precipitation bath, these two aspects will be focused in this work. For 

this purpose, a method is developed, which allows an informative characterization of the polymer 

solution thermodynamics. Based on a conventional polymer solution system the developed method is 

validated and applied for creating the phase diagram of this system at different experimental 

conditions. Furthermore, various controllable parameters are varied during the manufacturing of 

polyethersulfone membranes in order to study their influences on the membrane formation process. 

Therefore, two comparative studies are conducted which investigate the impact of variations in 

concentration and type of polymeric additives on one hand, and on concentration and type of non-

solvent additives, polymer concentration and precipitation conditions on the other hand. Additionally, 

both studies include a comparison between different applied solvent systems where both, 

conventional and alternative solvents are used. Apart from monitoring the polymer solution viscosity 

and the solution thermodynamics in dependence of the different applied variables, the membrane 

properties to be investigated include the permeability, the protein retention capacity, the surface 

characteristics and the cross-section structure of each membrane prototype. 

All in all, the main goals of this work are to improve the understanding of the membrane formation 

mechanisms and to evaluate potential alternative solvents for membrane fabrication in comparison to 

conventional solvents. Therefore both, the thermodynamic and kinetic aspects of membrane 

formation are addressed in this work. 
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3 Theoretical Background 

3.1 Membranes 

3.1.1 Definition and function 

A membrane is defined as a thin selective barrier between two different fractions [1,2]. On one hand, 

a membrane enables the spatial segregation of one or more components from each other. It can for 

instance separate a compartment from an external environment as it is the case in a biological cell [3]. 

On the other hand, a membrane can also be used for the selective separation of different components 

from a mixture of substances. An application example is the selective separation of particles from a 

suspension during a biotechnological purification process. In this case the aim is the removal of small 

molecules such as proteins, viruses or bacteria from an aqueous solution containing the desired target 

molecule [4]. The selectivity of the membrane defines for which substances the membrane is 

permeable and for which it is impermeable. If the membrane is permeable for at least one component 

of the filtration medium, the presence of an adequate driving force enables the separation of the 

substances within the feed as it is schematically depicted in Figure 1 [1,5]. 

 

Figure 1 Schematic illustration of a membrane separation process (adapted from Mulder) [1]. 

The driving force determines the flow direction of the feed stream as well as the duration of the 

filtration [6]. Depending on the application of the process different driving forces can be applied [7]. 

The most prevalent driving force in membrane technology is a pressure difference (𝛥𝑝) between both 

sides of the membrane. Pressure-driven membrane processes are applied for water purification and 

desalination, for the downstream processing of pharmaceuticals, as well as for sterilization of drugs 

and foods [8]. In contrast, processes with concentration gradients ( 𝛥𝑐 ) or differences in the 

electrochemical potential (𝛥𝐸 ) as driving force are mainly used for dialysis. At last, temperature 

differences (𝛥𝑇) are commonly applied as driving force in membrane distillation [5–7]. 
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3.1.2 Classification 

In general, membranes can be classified based on their origin. They can have a biological source, as it 

is the case for cell membranes, or they can be technically derived synthetic products [3,9]. This work 

focuses exclusively on synthetic membranes. Due to the diversity of synthetic membranes, they can 

be further classified with respect to different characteristics. These include the bulk material they are 

made of, the separation properties such as the mean pore size or the molecular weight cut-off, and 

the morphological structure of the membrane cross-section [2,10]. 

With respect to the bulk material membranes can be divided up into two main categories: Organic and 

inorganic membranes [1]. Inorganic membranes include products consisting of oxides, metals, or 

ceramics. In comparison to organic membranes, the use of inorganic membranes enables higher 

selectivity and higher permeability during filtration. Additionally, they are much more resistant 

towards extreme filtration conditions such as extremely high temperatures or extreme pH values 

[11,12]. Nonetheless, in industrial production the dominating materials for the production of filtration 

membranes are different organic polymers [13]. Cellulose derivatives, polyethersulfone (PES) and 

polysulfone (PSf), as well as polyamide (PA) and polyvinylidene fluoride (PVDF) are among the most 

commonly applied organic membrane materials [14]. Compared to inorganic compounds, the 

advantages of polymeric materials are their broad availability, the lower material prices and a larger 

range of application possibilities. However, the downside of polymeric membranes is their limited 

resistance to extreme temperatures, pH conditions and certain organic solvents [12,15,16]. 

Another possibility to classify membranes is based on their cross-sectional morphology (Figure 2). In 

general, membranes can have a dense or a porous morphology [1]. In case of porous membranes one 

can further distinguish between a symmetric and an asymmetric pore size gradient. An additional 

variant is the composite membrane. It consists of both, a dense top layer responsible for the separation 

efficiency as well as a porous support responsible for an increased stability [12,13,17]. 

 

 

Figure 2 Schematic illustration of membrane cross-section morphologies (adapted from Rösler) [18]. 
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While the separation mechanism of dense membranes is based on a solution-diffusion model, as it is 

for example applied in pervaporation or gas separation, the separation of mixtures using porous 

membranes is mainly based on the principle of size exclusion [19–22]. However, the sieving effect of 

porous membranes may be supported by adsorptive effects [23,24]. Furthermore, it may also be 

completely based on adsorptive effects as it is the case for membrane adsorbers [13,21,25]. 

Since the application area of size-exclusion based porous membranes strongly depends on the 

separation properties of the filter, these membranes are commonly further classified by their pore size 

or their molecular weight cut-off [22]. Depending on the range of the pore sizes and on the respective 

molecules which shall be separated from each other, one can distinguish between reverse osmosis, 

nanofiltration, ultrafiltration, virus filtration and microfiltration (Figure 3) [1,4]. 

 

Figure 3 Classification of size-exclusion based membrane processes (adapted from van Reis and Zydney) [4]. 

The areas of applications for reverse osmosis and nanofiltration mainly include the purification of 

wastewater, water desalination and drinking water purification [2,8]. In contrast, ultrafiltration, virus 

filtration and microfiltration are primarily applied for the purification of biotechnologically 

manufactured drugs such as antibodies or vaccines, as well as for the clarification and sterilization of 

beverages and other foods [21,26]. 

 

3.1.3 Ultrafiltration membranes 

This work addresses the production of porous polymeric membranes. The focus was laid on the 

manufacturing of ultrafiltration membranes, since it was chosen as model process for all investigations.  

Ultrafiltration membranes typically feature a separation range of molecule sizes varying from 1 nm up 

to 100 nm [17]. Furthermore, they can be characterized by a porous asymmetric structure consisting 

of a dense separation layer and a porous support layer (Figure 4) [16]. 
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Figure 4 Scanning electron microscopy image showing the typical structure of an ultrafiltration membrane. 

The so-called skin is located on the air-facing side of the membrane, where the side refers to the 

orientation of the membrane during the production process. It is the selective layer, which is 

responsible for the separation performance of the filter and which is mainly contributing to the flow 

resistance of the filter [16,27]. The skin is supported by a porous sublayer, which can be characterized 

by an increasingly growing pore size gradient towards the support-facing side of the membrane [28,29]. 

It serves as a mechanical support for the skin layer, which typically has a thickness of only a few 

nanometers. However, at the same time it is also contributing to the flow resistance of the membrane 

and therefore influences the membrane permeability [4,5,30]. In general, the substructure can exhibit 

one of two different morphologies. On one hand it can consist of a complete sponge-like structure, 

which has a visible pore size gradient towards the bottom of the membrane. On the other hand, the 

structure can be dominated by a finger-like morphology, where the sponge-like regions are repeatedly 

interrupted by large holes, the so-called macrovoids [31–33]. The macrovoids significantly reduce the 

flow resistance of the membrane, but at the same time they also lower the mechanical stability of the 

filter [34,35]. The two typical cross-section morphologies are exemplary shown in Figure 5. 

 

Figure 5 Scanning electron microscopy image of an ultrafiltration membrane with a finger-like (a) and a 

sponge-like (b) morphology. 
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Apart from applications in the food industry, such as for the clarification of juices, wine and beer, the 

purification of biopharmaceutical products is one of the main areas of application for ultrafiltration 

membranes [36–38]. Depending on the membrane characteristics and the respective process design, 

an ultrafiltration membrane may be used for concentration of the product or for the replacement of 

buffers and cell media [21,25]. According to the particular application area and to the size of the 

particles to be filtrated membranes with certain characteristics are required, especially with regard to 

their separation behavior [30].  

In order to meet the requirements of the user as well as of regulatory agencies like the Food and Drug 

Association (FDA), the production process of ultrafiltration membranes has to be strictly controlled 

[39,40]. Therefore, it is essential that the process is very well known and understood [41]. In order to 

improve the understanding of the membrane formation process a lot of studies were conducted in the 

last decades [31,42]. However, for the basic understanding of the membrane formation mechanisms 

there is still room for improvement, since some of the past studies demonstrated contradictory results 

[43]. Furthermore, many studies on the production ultrafiltration membranes are limited to only one 

or at most a few single aspects, so that to date a holistic picture of membrane formation via immersion 

precipitation is missing. 

 

3.1.4 Membrane production methods 

There are several methods, which can be applied for the production of membranes. The selection of 

the appropriate production method depends on the starting material as well as on the desired product 

properties [44,45]. In case of inorganic materials, the starting material is often pressed from a powder 

to a plate and the pores are subsequently generated by sintering [11,22]. The same procedure can also 

be applied for the production of specific polymer membranes [44]. Furthermore, intentionally induced 

leaching of chemically less resistant components of the raw material is another possibility for 

producing inorganic membranes [11].  

In addition to sintering of pressed polymer powder, polymeric membranes can also be produced by 

stretching or extruding films [21]. However, currently the most commonly applied method for the 

production of porous polymer membranes is based on phase separation of polymer solutions [46–48]. 

There are essentially four different mechanisms, which can be used to induce the phase separation: 

Non-solvent induced phase separation (NIPS), vapor induced phase separation (VIPS), evaporation 

induced phase separation (EIPS) and thermally induced phase separation (TIPS) [33,47]. During NIPS 

the contact of a homogeneous polymer solution to a suitable liquid non-solvent causes an exchange 

between the solvent in the polymer film and the precipitant in the so-called precipitation bath. In turn, 

this results in a compositional change, which ultimately leads to the phase separation of the polymer 
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solution [49–51]. In contrast, during VIPS the precipitant is absorbed from a gas phase containing the 

non-solvent. Therefore, the compositional change leading to phase separation is solely resulting from 

an uptake of the non-solvent [52,53]. In the case of EIPS, the change of the polymer film composition 

is caused by an evaporation of the volatile solvent from the polymer solution [54]. Finally, the TIPS 

method is based on the fact that the solvent is only able to dissolve the polymer at high or low 

temperatures. Consequently, a reduction or an increase of the temperature can induce the separation 

of the phases [32,49].  

This work solely focuses on NIPS, which is one fundamental process step of the immersion precipitation 

method. Therefore, in the following this technique will be described in more detail. 

 

3.2 Immersion precipitation 

3.2.1 Principle of immersion precipitation 

Among the different phase inversion techniques, immersion precipitation is one of the most commonly 

applied processes for the production of porous polymer membranes in industry [1,47]. It can be 

described as a combination of VIPS and NIPS, where a precise control of both mechanisms allows the 

production of membranes with a wide range of different properties [53,55]. The immersion 

precipitation process is schematically represented in Figure 6. 

 

Figure 6 Schematic illustration of the different steps during the immersion precipitation process. 
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In the first step of the immersion precipitation process a previously prepared homogeneous polymer 

solution is applied to an appropriate support with a defined thickness [56]. For the production of 

membranes with coarser pore structures, as it is for example the case for microfiltration membranes, 

a so-called preconditioning step is implemented, which is based on the VIPS mechanism [53,57]. During 

this step the phase separation is induced from the top of the polymer film by introduction of the non-

solvent from a gaseous phase into the polymer film [52]. The duration of this preconditioning step can 

be varied to control the porosity and the pore size of the resulting membrane [52,58]. However, after 

the VIPS step the phase separation process is usually not completely finished in a large part of the film. 

This is why the preconditioning is followed by an actual precipitation step [53]. Therefore, the support 

with the polymer film is immersed into a bath of non-solvent, so that NIPS can occur [51]. The exchange 

between the solvent from the polymer film and the non-solvent from the precipitation bath induces 

phase separation throughout the complete polymer film [59–61]. This results in the development of 

the structure until solidification sets in, which ultimately defines the final membrane morphology 

[62,63]. A prerequisite for the precipitation process is the insolubility of the membrane-forming 

polymer in the precipitation medium. In contrast, the solvent and the precipitating agent have to be 

miscible with each other in order to enable a bilateral diffusive mass transfer between non-solvent and 

solvent [42,49,64]. This diffusional exchange is driven by a gradient in the chemical potential [65]. 

When the solubility limit of the polymer in the polymer film is exceeded, so that an unstable 

composition in the film is achieved, phase separation occurs [66]. Thus, the combination of mass 

transport and phase separation determines the final membrane structure. 

 

3.2.3 Technical implementation 

For the technical implementation in an industrial scale the immersion precipitation process is realized 

by application of special membrane casting lines, which allow a continuous production process [1]. A 

schematic representation of an immersion precipitation casting line is shown in Figure 7. 

 

Figure 7 Schematic illustration of a membrane casting line for membrane production via immersion 

precipitation (adapted from Strathmann) [44]. 
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For large scale implementation the casting solution is prepared in a large vessel. This solution usually 

consists of the polymer, the solvent, a small amount of the non-solvent and possibly additives. These 

raw materials are mixed in a temperature-controlled vessel with an engine-driven stirrer until a 

homogeneous solution is obtained. Afterwards, the solution is degassed in order to prevent defects 

within the membranes through air bubbles [67]. After pumping the casting solution from the vessel to 

the casting line, the solution is filtered over a filter cartridge to ensure the removal of any disturbing 

particles. Following that, the solution is applied onto a steel belt or drum (B) by a nozzle or a doctor 

blade system (A) with a defined thickness. Depending on the desired membrane properties, the film is 

then exposed to the preconditioning atmosphere (C), which contains a defined amount of the non-

solvent. In case of membranes which have to be produced without any preconditioning, the VIPS step 

is omitted. After preconditioning, the medium with the polymer film is immersed into the precipitation 

bath (D), which is filled with liquid non-solvent. Within this bath the actual phase separation takes 

place. Subsequently, the membrane is moved through one or more rinsing tanks (E) and extraction 

reservoirs (F) via several deflection pulleys. This ensures the removal of possible extractables and 

leachables. Finally, the membrane is dried (G) and then winded up (H) for further processing [1,44,68]. 

 

3.3 Structure forming mechanisms 

3.3.1 Phase diagram 

In general, a phase diagram is used to describe the behavior of a mixture of substances when either 

composition, pressure or temperature is changed, while the other two factors remain constant [69]. 

Therefore, a phase diagram can be used to display the thermodynamic state of a ternary polymer 

solution for membrane preparation, which consists of the membrane-forming polymer, an appropriate 

solvent and a proper non-solvent at constant pressure and temperature (Figure 8) [1,31]. 
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Figure 8 Representative phase diagram for the thermodynamic description of a ternary polymeric system 

at constant pressure and temperature (adapted from Mulder) [1]. 

While the corners of the ternary diagram represent the pure components, the sides of the triangle 

show the composition of binary mixtures. In case of binary mixtures, lines which run parallel to the 

opposite side of the triangle represent a constant share of one component. On the other hand, any 

thermodynamic state lying within the phase diagram indicates the mass fractions of all three 

components at this point [10,70].  

The production of membranes is based on the circumstance that the phase diagram of the respective 

polymer solution features a two-phase region. By transforming the originally stable state of the 

mixture into a thermodynamically unstable condition, two coexisting phases are formed. These two 

phases are in a thermodynamic equilibrium [59,71]. Phase separation occurs because the 

thermodynamically unstable condition causes an achievement of the minimum of the free enthalpy of 

mixing (Gibbs energy), so that a new thermodynamic equilibrium is reached. The function of the free 

enthalpy within the heterogeneous region of a polymer solution exhibits two minima. These minima 

represent the compositions of the two phases at equilibrium (Figure 9) [1,72].  
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Figure 9 Free enthalpy of mixing as a function of the substance amount fraction in a phase diagram [72]. 

The minima of the enthalpy of mixing are the endpoints of each tie-line, which represent the 

connecting line between the two phases in equilibrium [1,70]. The boundary between the 

thermodynamically stable and unstable region is limited by a connection line, which links all minima 

of the free enthalpy function of the polymer across the complete compositional range. This connection 

line is the so-called binodal. It thus represents the boundary between the homogeneous one-phase 

and the heterogeneous two-phase region, which is synonymously also referred to as miscibility gap or 

liquid-liquid equilibrium [1]. If the binodal is crossed during the membrane manufacturing process, a 

polymer-poor and a polymer-rich phase is forming, with both phases being in an equilibrium. The 

polymer-rich phase is responsible for the formation of the membrane matrix, whereas the polymer-

poor phase accounts for the formation of the porous network [50,60]. 

The heterogeneous region can be further divided up into a metastable and an unstable region. The 

unstable region is located between the two inflection points of the enthalpy function (Figure 9) and 

can therefore be identified through the maximum of the free enthalpy of mixing. This region is 

surrounded by the spinodal curve, which therefore separates the metastable from the unstable region 

[15]. The area between the binodal and the spinodal curve, which lies in-between the minimum and 

the inflection point of the enthalpy function, is the metastable region [73]. The point where both, 

binodal and spinodal intersect, is known as the critical point. At this point the solution exists as a single 

phase and therefore exhibits a homogeneous condition [1]. Another crucial element of the phase 

diagram is the solidification boundary. It represents the border in the phase diagram at which the 

single phase of a homogeneous solution or the polymer-rich phase of a heterogeneous solution 

reaches a viscosity, which is so high that the solution passes into a gel-like state. Therefore, the 

structure formation is finalized as soon as the solidification boundary is crossed [74–76]. 
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3.3.2 Demixing mechanisms 

A major challenge in the fabrication of membranes is the reproducibility and controllability of the 

segregation mechanisms occurring during the phase separation process. However, due to the large 

number of influencing variables and dependencies of the mechanisms, a prediction of the final 

membrane structure is challenging and therefore only partially possible. In turn, this means that the 

reproducibility of the membrane structure cannot be completely controlled. Although membrane 

formation via phase separation has repeatedly been in focus of research during the last decades in the 

field of membrane technology, the discussions about specific influences are still controversial [31,77]. 

The segregation mechanisms, which have already been discussed and are widely accepted, are 

summarized in the following. 

The mechanisms which are responsible for the structure formation depend on two factors. On one 

hand, the kinetics of the phase separation process play an important role for the membrane properties, 

since they influence the mass transfer during precipitation. Therefore, the kinetics affect the 

compositional changes and thus are crucial for the path through the phase diagram [43,78]. On the 

other hand, the underlying structure formation mechanism ultimately depends on the entry point into 

the miscibility gap [15]. One can differentiate between four different precipitation paths, which can be 

associated with different separation mechanisms (Figure 10) [79]. 

 

Figure 10 Schematic illustration of structure forming mechanism in dependence of the point of entry into 

the heterogeneous region of the ternary phase diagram (adapted from Stropnik et al.) [79]. 

In case of the first path, the composition of the casting solution does not enter the miscibility gap at 

all. Nonetheless, at some point of the process the solidification boundary is crossed. In turn, this results 

in the gelation of the polymer solution and therefore in the formation of a foil [1,79]. In contrast, the 

other three mechanisms result from a path through the miscibility gap, with different structures 
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developing in dependence of the entry point. The second and the fourth precipitation path of Figure 

10 enter the heterogeneous area directly into the metastable region, either above or below the critical 

point. In both cases the structure formation is based on a nucleation and growth mechanism [15]. 

Although the polymer solution is stable towards small compositional fluctuations, segregation of the 

solution occurs when a critical radius of the fluctuations is reached. The reason for this is that the 

formation of a stable nuclei of one phase within the matrix of the other phase leads to a decrease in 

the free enthalpy of the polymer solution [1,2]. The critical radius 𝑟∗  is necessary to induce phase 

separation and can be described by the following equation [80]: 

𝑟∗ =  − 
2 ∙  𝜎

𝛥𝑔
 (1) 

The necessary radius for the formation of a stable nuclei is thus dependent on the surface energy 𝜎 

and on the change in the free enthalpy per volume 𝛥𝑔 [80]. The rate of the nuclei formation, however, 

is dependent on the number of nuclei, which have already reached the critical radius. The higher the 

number, the higher the probability that an unstable nucleus will absorb another particle and 

consequently will become stable [1,2]. 

As soon as the binodal is crossed, the formation of homogeneous nuclei starts [66]. If the entry point 

lies above the critical point, the nuclei consist of the polymer-poor phase, which is predominantly 

composed of the solvent and the non-solvent. The individual nuclei are enclosed by a polymer-rich 

matrix, which is the basis for the backbone of the membrane. In contrast, the polymer-poor domains 

are washed out during the immersion precipitation process, so that a porous network within the 

membrane backbone is formed [61]. The pore size structure is determined by different coarsening 

mechanisms, which take place until solidification sets in [81,82]. 

If the entry point into the metastable region is located below the critical point, however, the nuclei are 

formed from the polymer-rich phase. In this case the nuclei are surrounded by a polymer-poor matrix. 

However, this mechanism usually does not result in a usable membrane, but rather in a polymer dust, 

a polymer granulate or at best in a globularly defective structure [44,79]. 

The third precipitation path enters the miscibility gap near or through the critical point directly into 

the unstable region. In this case spinodal segregation occurs. In comparison to the nucleation and 

growth mechanism, the smallest composition variations result in a reduction of the free enthalpy of 

mixing [1,15]. As a consequence instantaneous demixing without nucleation occurs, which results in a 

bicontinuous structure [66]. Spinodal segregation can be divided up into three phases. In the early 

phase, which begins with the crossing of binodal and spinodal near or through the critical point, the 

composition fluctuations are small and the structure growth begins. In the intermediate phase the 

structure growth stagnates and spinodal demixing finishes. In the last stage different coarsening 
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mechanisms such as Ostwald ripening or coalescence occur, which lead to further structural changes 

[83]. Due to these structural changes, which are similar to those appearing during growth and 

coalescence, the structure might no longer be distinguishable from a structure that developed through 

growth and coalescence [52]. Thus, a direct fixation of the structure after non-solvent induced 

demixing results in the typical morphologies shown in Figure 10. However, if subsequent coarsening 

mechanisms occur, it is nearly impossible to attribute the final structure to the structure-forming 

mechanisms which have occurred [2,84]. 

 

3.3.3 Coarsening mechanisms 

As mentioned, until solidification sets in the structure is subject to further structure-forming effects. 

This is why the originally formed structure cannot be regarded as static [85]. The effects significantly 

contributing to the coarsening of the forming membrane matrix include coalescence and Ostwald 

ripening [73]. 

Coalescence describes the merging of dispersed droplets of one phase, so that it results in the fusion 

of several small nuclei to a larger nucleus. The driving force of this process is the minimization of the 

interfacial tension between the polymer-rich and the polymer-poor phase [64,68]. Significant 

influencing factors are the time and the viscoelastic properties of the coalescing phase. The following 

equation was derived by Matsuyama et al. and can be used to describe coalescence [73]: 

𝑑3 =   
8 ∙  𝑘 ∙  𝑇 ∙  𝜈 

µ ∙  𝜋
 ∙  𝑡 (2) 

Here 𝑑  is the diameter of the nucleus, 𝑘 is the Boltzmann constant, 𝑇  is the temperature, 𝜈 is the 

volume fraction of the nuclei, µ is the viscosity of the medium, 𝜋 is the circle number and 𝑡 is the time. 

It was experimentally shown that coalescence does not only influence the structure during the 

nucleation and growth mechanism, but also after spinodal segregation. Tsai et al. demonstrated that 

a prolonged time of coalescence results in the change from a bicontinuous structure of the spinodal 

segregation to a cellular nuclei morphology. The observed structural transition was not only dependent 

on the time, but also on the viscoelastic properties of the polymer solution. Thus it could be shown 

that an increase of the solution viscosity, for example as a result of using another solvent, can retain 

the original bicontinuous structure, although the time in the coalescence area is high [52]. 

In contrast to coalescence, Ostwald ripening is a coarsening mechanism where the small nuclei shrink 

in favor of the larger nuclei [86]. This effect results from the circumstance that the surface 

concentration of the nucleating phase is larger for smaller nuclei, than it is for the larger ones. This 

results from the greater curvature of the small nuclei in comparison to the large nuclei. Consequently, 

the internal pressure in the small nuclei is higher and a passage of the particles from the nuclei into 
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the surrounding phase is favored. Furthermore, the concentration difference between small and large 

nuclei causes an attraction and therefore a diffusive transport of the small nuclei towards the larger 

ones [87]. In the course of this movement the small nuclei shrink in size, until they reach a radius 

smaller than the critical radius (Equation 1). Finally, an instantaneous dissolving of the small nuclei is 

provoked, whereas at the same time the large nuclei can enhance their growth rate. Coarsening by 

Ostwald ripening can be describe mathematically with the following equation [73]: 

𝑑3 =   
64 ∙  𝜎 ∙  𝐷 ∙  𝜒 ∙ 𝑉𝑚 

9 ∙  𝑅 ∙  𝑇
 ∙  𝑡 (3) 

Here 𝑑  is the diameter of the nucleus, 𝜎 is the interfacial energy between the nucleating and the 

surrounding phase, 𝐷 is the diffusion coefficient of the nucleating phase, 𝜒 is the substance amount 

fraction of the nucleating phase within the matrix, 𝑉𝑚 is the molar volume of the nucleating phase, 𝑅 

is the ideal gas constant, 𝑇 is the temperature of the nucleating phase and 𝑡 is the time. 

 

3.3.4 Formation of the skin layer of ultrafiltration membranes 

The so-called skin layer is mainly responsible for the retention capacity of asymmetric ultrafiltration 

membranes. The separation efficiency of the skin is strongly influenced by the manufacturing process, 

since the separation performance is mainly dependent on the polymer concentration at which the 

phase separation is induced through the entry of the miscibility gap [19,88]. The separation layer is 

generated on the air-facing side of the polymer film, since this side comes into contact with the non-

solvent first when the film is immersed into the precipitation bath [44]. The resulting diffusive 

exchange between solvent and non-solvent at the top of the polymer film induces the phase 

separation from the top. This is why the structure is first solidified at the top of the polymer film [19]. 

Consequently a diffusion barrier is created, which significantly slows down the diffusive exchange 

between the precipitation bath and the lower layers of the polymer film. Therefore, below the 

diffusion barrier less solvent can diffuse out of the polymer solution, so that the onset of the phase 

separation occurs at lower polymer concentrations. As a result, the pore structures become more open 

towards the support-facing side of the developing membrane, which leads to the typical asymmetric 

structure [41,89]. In contrast to the formation of the support layer, which is developing from 

nucleation and growth or spinodal segregation, the formation of the skin layer is not fully understood. 

On one hand, the skin layer can be formed by a direct passage of the homogeneous polymer solution 

to a gel-like state, so that the solution does not even reach the two-phase region. Since a phase 

separation is not induced, a non-porous structure is resulting. In this case, the retention capacity is 

determined by the arrangement of the polymer chains within the gel at a molecular level [75,89,90]. 

On the other hand, the skin can also be formed by phase separation. However, in contrast to the case 
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of the porous support, the entry point into the two-phase region is located at very high polymer 

concentrations and therefore close to the solidification boundary. Consequently, solidification is 

reached quickly and a structure coarsening is almost impossible, so that a thin narrow layer is formed, 

which is responsible for the separation capability [74,91]. 

 

3.3.5 Formation of macrovoids 

The mechanisms for the formation of cavities within the membrane cross-section, which are also 

known as macrovoids or finger-like structures, are controversially discussed [85,92–94].  

One theoretical explanation for the formation of macrovoids is based on the assumption that they 

appear at the skin-side of the membrane and that they therefore result from interfacial phenomena 

between the casting solution and the precipitation bath [92,94]. One interfacial phenomenon, which 

could be responsible for macrovoid formation, is the Marangoni effect. It induces the formation of 

convection cells, which act as an initiator for the growth of the finger-like structures. In this case the 

driving force for the macrovoid development is the increased polymer concentration in the selective 

separation layer, since it causes an increased surface tension [94]. 

Another possible interfacial mechanism could be the mechanical force during the shrinkage of the 

polymer film, which causes the occurrence of defects within the skin. These defects allow a locally 

increased inflow of the non-solvent. In turn, the onset of phase separation within one horizontal film 

layer is locally retarded, so that the formation and growth of larger nuclei is promoted [92]. 

However, an argument against these mechanisms is the occurrence of macrovoids considerably below 

the skin layer. Therefore, another theory implies that a rapid demixing process (instantaneous 

demixing) below the skin layer is responsible for formation of the voids [93]. As previously described, 

the formed skin layer acts as a diffusion barrier, which slows down the diffusional exchange between 

polymer film and precipitation bath. While the structure formation in the separation layer has already 

been completed, the demixing process in the underlying layer has only just begun [41]. Consequently, 

there is another section below the skin layer, which is still in a thermodynamically stable state. Hence, 

the phase separation is locally delayed (delayed demixing) and does not occur instantaneously after 

immersion into the precipitation bath across the complete cross-section of the polymer film [93]. As a 

result, the polymer-poor phase nuclei can grow by the diffusive inflow of solvent from the still 

homogeneous polymer solution of the underlying layers. This diffusive transport is driven by a 

concentration gradient [93,95]. The diffusion-based growth is additionally enhanced through 

coalescence of the polymer-poor domains. If the phase separation front is moving slower through the 

cross-section of the polymer film than the diffusion front of the non-solvent, the formation of voids 

extending to the support-facing side of the film is favored (Figure 11) [1]. 
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Figure 11 Schematic illustration of the development of macrovoids (adapted from Mulder) [1]. 

If the extended solvent-rich domains are outrun by the phase separation front, new nuclei can form 

below the already growing domains. In turn, this leads to the termination of the nucleus growth. Thus, 

the rate of the solvent diffusion and the locally delayed onset of phase separation are critical factors 

for the presence and the morphology of macrovoids within the membrane [1,78,93].  

 

3.3.6 Solidification 

After onset of phase separation the composition of the two phases cannot be considered to be static, 

since there is a steady mass transfer during membrane formation [85]. The removal of solvent from 

the polymer-rich phase leads to an increase in the polymer concentration within this phase. If a critical 

polymer concentration is exceeded, a three-dimensional network is formed. This can be mainly 

attributed to intermolecular interactions between the polymer chains, such as hydrogen bonds, dipole-

dipole interactions and hydrophobic interactions [74,76,85]. Because of these interactions the viscosity 

is increasing. At some point the viscosity increase results in a complete immobilization of the formed 

structures, so that the polymer solution passes into a gel-like state [82]. As soon as the so-called 

solidification boundary (Figure 8) is exceeded, a coarsening of the structure is no longer possible and 

the matrix solidifies, which finally determines the essential membrane performance properties [19]. 

Due to the lack of knowledge on the exact mechanisms of gel formation during immersion precipitation, 

there is no precise definition for the exact location of the solidification boundary. A main reason for 

this is the short duration of the solidification process. However, the solidification boundary is often 

referred to as the state of infinite viscosity or it is declared to be higher than 106 mPa∙s [1,2,96]. 
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3.4 Sustainable membrane processes 

3.4.1 REACH regulations 

The European Union’s system for regulation, evaluation and authorization of chemicals (REACH) is a 

strategy which specifies different rules for the application and handling of existing and new chemicals 

[97]. In particular, this strategy involves regulatory restrictions on the use of substances of high 

concern for human health and the environment. Therefore, the intention of the regulations is to make 

chemical processes safer for humans and the environment [98]. In order to fulfill the regulatory 

function, the work of REACH includes the classification and the proper labeling of existing and new 

chemicals. Furthermore, the tasks involve the registration and evaluation of all existing chemicals with 

respect to their properties, as well as the determination of limitations in the manufacturing and 

application of substances in industry. In addition, REACH regulates the information transfer by creating 

and sharing reports and technical documents, so that the users are informed about relevant changes. 

This shall help the user to look for potential alternatives when a used substance is of high concern [99]. 

To conclude these tasks, the general objectives of REACH involve the protection of environment and 

human health, the increase of the competitiveness of the European chemical industry, the prevention 

of animal testing in industry and the integration of international objectives [100]. 

 

3.4.2 Green Chemistry in membrane technology 

Green chemistry is a concept for reducing or eliminating the application or generation of hazardous 

substances in chemical processes, in order to make these processes less harmful for humans and the 

environment [49]. In order to reach this goal, the design of chemical processes and the implementation 

of chemical reactions or components has to follow certain principles, which are known as the twelve 

principles of green chemistry [101–103]. These twelve principles formulated by Paul Anastas and John 

C. Warner [102] are summarized in Figure 12. 
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Figure 12 Depiction of the twelve principles of green chemistry. 

In general, the application of these principles shall reduce or even completely avoid the use of harmful 

substances. In this context, the safety improvement refers to both, the manufacture of new or existing 

chemicals and the application of chemicals in a process. In particular, the focus of the improvement is 

laid on the influence of a chemical or a process on human health and on the environment [103,104]. 

In order to follow the principles of green chemistry and to comply with the REACH regulations, the 

adaption of membrane production and membrane application processes is currently an important 

issue in membrane technology [105–107]. It shall increase the membrane sustainability, so that 

membrane processes remain competitive.  

One of the most important principles of green chemistry for reaching the environmental and economic 

goals is the use of safer solvents and auxiliaries [103]. Since most of the conventionally used solvents 

for membrane preparation via phase inversion are hazardous and considered to be carcinogenic or 

toxic, their substitution is one of the main tasks to increase the safety of the fabrication processes 

[8,49]. However, the replacement of the currently used solvents for membrane preparation is also one 

of the main challenges. The reason for this is that product specifications, customer requirements and 

competitive properties have to remain similar, despite of the solvent exchange [108]. The difficulty at 

this are the different characteristics of the individual solvents, which make a one-to-one exchange 

impossible. This is the reason why recently a lot of different solvents have been studied for their 

potential to substitute conventional solvents in membrane production by immersion precipitation 

[106,107,109–111]. The better the fabrication process and the influencing factors are understood, the 

more feasible is a solvent substitution while maintaining the previous membrane characteristics. 
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3.5 State-of-the-Art 

3.5.1 Characterization of polymer solution thermodynamics 

The currently used methods for studying the polymer solution thermodynamics include the theoretical 

calculation of a system’s phase diagram on one hand, as well as an experimental determination of the 

binodal curve on the other hand. In this context, the theoretical calculation of the phase diagram is 

based on the Flory-Huggins theory [112–114]. The Flory-Huggins theory has been adapted by several 

groups in order to be able to apply the solubility parameter of the respective polymer and solvent for 

the calculation of the miscibility gap [71,115–117]. On the other hand, the currently established 

experimental method for the investigation of the polymer solution thermodynamics is the cloud point 

titration [48,59,118]. By determining several cloud points of the system at different solution 

compositions with low polymer concentrations, the binodal curve can be extrapolated for the 

complete polymer concentration range [48].  

Although these two methods allow the determination of critical phase diagram components, they have 

several limitations. In case of the Flory Huggins based calculations, the interpolated results can deviate 

from the real thermodynamics. This can be caused by several assumptions that have to be supposed 

to be able to apply the Flory Huggins theory for the phase diagram calculation. In contrast, the 

limitations of the cloud point titration method are of experimental nature. During one experimental 

run only one single composition can be determined, which lies on the binodal curve. Furthermore, a 

relatively low solution viscosity is required in order to obtain reliable results. Therefore, cloud point 

titrations can only be performed for solutions with a low polymer concentration. Consequently, the 

binodal curve has to be extrapolated from a few single measurements, which might lead to deviations 

from the reality. Apart from the experimental limitations, cloud point titration experiments do not 

provide direct information on the phase equilibria and therefore they do not allow the direct 

determination of the compositions of the co-existing phases [119]. This is why there is a demand for 

an improved method, which minimizes the limitations the currently available methods bring along. 

 

3.5.2 Influences of the polymer solution composition 

In the past various studies were conducted to investigate the influence of varying polymer solution 

compositions on membrane performance and structure. However, as the membrane formation 

process is very complex and strongly depends on the combination of several different variables, there 

is still a huge interest to further enhance the knowledge on the fundamentals of the formation 

mechanisms [31,42,43,47]. Furthermore, if the existing studies are compared to each other, the results 
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are contradictory. Especially in case of studies on the influences of polymeric additives on membrane 

formation, the reported results disagree among each other. 

For polyvinylpyrrolidone (PVP) it has been shown that the pure water flux increases with a raising 

concentration of PVP in the casting solution, while the retention decreases at the same time [120–

124]. Most research groups reported a maximum of the flux at a certain PVP concentration, although 

the location of this maximum differs between the studies of the different groups. Following the 

observed maximum, it was found that the water flux starts to decrease when the PVP concentration is 

further increased [120,121,125]. In contrast, two other groups could not observe a flux minimum or 

maximum at a certain PVP concentration within the examined concentration range. Instead they found 

that the flux is constantly rising with an increasing PVP concentration, until it reaches a plateau at 

which the flux remains more or less constant with a further increase in the PVP concentration [124,126]. 

Yet another study reveals that an increase of the PVP concentration results in a constant rise of the 

pure water flux, without reaching a point at which the flux starts to stagnate [127]. 

A similar inconsistency of the results can be noted for variations of the PVP molecular weight. Most 

studies indicate that the water flux and the molecular weight cut-off decline when PVP with a higher 

molecular weight is applied [43,62,128–131]. However, there is also one study showing the contrary 

trend for the application of PVP with different molecular weights [132]. On top of that, the critical 

molecular weight, which is necessary to induce a significant flux decline, varies between the different 

investigations [128–131]. 

Apart from the impact on the membrane performance data, some research groups reported that the 

addition of PVP to the casting solution can suppress the formation of macrovoids. In these studies it 

has been shown that the effect is independent of the molecular weight of the additive 

[43,126,130,131,133,134]. In contrast, other studies report opposite results, since the presence of PVP 

in the casting solution resulted in an increased growth of macrovoids [121,135]. Again other researcher 

reported that the opposing effects can be explained by the choice of the solvent, as well as by the 

molecular weight and concentration of the PVP [125,135–137]. 

Contradictory results have also been reported for polyethylene glycol (PEG) as additive. It has 

repeatedly been shown that the flux can be enhanced by increasing the PEG concentration [138–141]. 

In contrast to this, one research group found that this increase can only be observed until a certain 

PEG concentration is reached. The group showed that after this critical concentration has been reached, 

a further enlargement of the PEG content in the casting solution results in a flux decrease [142].  

Similar observations were reported for variations of the PEG molecular weight. Most research groups 

observed a constant flux increase with a rising PEG molecular weight [138,139,143]. However, there is 

also one study revealing that the flux increase has a maximum at a certain molecular weight. By further 

elevating the length of the PEG molecules, a flux reduction could be observed after reaching this 
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maximum [144]. The same research group has also reported that the pore size decreases with an 

increase of the PEG molecular weight. This shows that at some point the pore forming characteristics 

of PEG, which lead to the observed flux increase, are overcome. In turn, this would explain the 

observed flux reduction [145]. Furthermore, it could be shown by several groups that the porosity of 

the membranes can be increased through an addition of PEG to the casting solution [139,142,144]. 

However, again other research groups found slightly different results. Their results imply that the 

increase of the porosity can only be achieved until a critical concentration is reached, whereas a further 

rise of the PEG concentration leads to a decline of the porosity [146,147].  

Further inconsistencies were found for the effect of PEG on the formation of macrovoids. Several 

studies indicate that the addition of PEG to the polymer solution can hinder the formation of 

macrovoids or finger-like structures [144,145,147]. In contrast, other works imply that the addition of 

PEG to the casting solution induces the formation of macrovoids and finger-like structures 

[138,140,141]. Yet one other research group reported that PEG does not influence the formation of 

macrovoids or finger-like structures at all [148]. 

Contradictory results have also been reported for the combined correlations between membrane 

structure and performance in dependence of variations in concentration or molecular weight of PVP 

or PEG. While some studies showed a direct correlation between the porosity and the permeability of 

membranes prepared from solutions with different additive variations [140,147,149], other studies 

could not confirm these relationships between membrane structure and performance at varying 

additive conditions [62,124,127,144]. 

In comparison to polymeric additives, the influences of non-solvent additives, polymer concentration 

and precipitation bath conditions have received far less attention. Although all three variables have 

already been investigated and are known to have an impact on membrane formation via phase 

inversion, the existing studies are only limited to single solvent systems or a distinct polymer.  

With respect to non-solvent additives, there are only a few studies which focus on the influence of 

adding different alcohols or water to PES casting solutions prepared with either dimethylacetamide 

(DMAc) or N-methyl-2-pyrrolidone (NMP) as solvents [51,150]. Furthermore, there is one other study 

which investigates the influence of maleic acid on PES membrane formation, using dimethylformamide 

(DMF) as solvent [151]. These studies reveal that the precipitation speed and consequently the 

membrane performance can be influenced by adding non-solvents to the casting solution. However, 

the present studies do not compare the influences between different solvent systems. Furthermore, 

the impact of a non-solvent addition to casting solutions prepared with ecologically less harmful 

solvents has not been tested so far. Since these alternative solvents often have different characteristics 

in comparison to conventional solvents, a change of the solvent could alter the impact of non-solvent 

additives. This is why there is still potential for further investigations. 



Theoretical Background 

25 
 

In case of the polymer concentration, there are also only a limited number of previous investigations, 

which all focus on systems consisting of PSf dissolved in either NMP or DMAc [33,152]. These studies 

indicate that an increase of the polymer concentration can suppress the formation of macrovoids, 

independently of the solvent which is applied. However, differences on the extent of the studied 

effects can already be observed when comparing the results between the two conventional solvents 

NMP and DMAc. Therefore, the combination of solvent and polymer seems to be an important point 

to be considered when substituting an existing solvent through another one and thus should be studied 

in more detail. 

The precipitation bath conditions have also been studied previously by several different research 

groups [121,123,147,153,154]. However, these studies are again limited to single ternary or 

quaternary systems and to solutions prepared with the hazardous solvents NMP, DMAc and DMF. This 

is why there is still potential to increase the knowledge on the precipitation variables when using 

ecologically less harmful solvents. In contrast to the contradictory results which could be observed for 

the other preparation parameters, the effects of varying precipitation bath conditions were the same 

for all previously studied systems. In all cases, it was shown that a higher temperature of the 

precipitation bath raises the water flux of the resulting membrane and that higher precipitation 

temperatures favor the formation of macrovoids.  

The past studies reveal that the prediction of the impacts of polymer solution composition and 

precipitation conditions on membrane formation via phase inversion is not straightforward. The 

results rather show that there are many influencing factors and that the combination of these factors 

during the membrane formation process is critical for the final membrane characteristics. This is 

supported by the significant heterogeneity of the results from the previous studies. As most previous 

studies only focused on one polymer, one solvent system, and often on the influence of one additive 

alone, there is still a high potential to improve the understanding of the membrane formation 

mechanisms and their influencing parameters. In particular, there is a lack of comparative studies, 

which consider the interaction of several factors. 

 

 

 

 

 

 



Theoretical Background 

26 
 

3.5.3 Increasing membrane sustainability 

Commonly applied solvents for the preparation of membrane casting solutions include NMP, DMAc, 

DMF and dioxane [31,49]. However, all of the named solvents bring up different safety, health and 

environmental issues during transport, storage and handling [8,106,110]. Furthermore, the disposal of 

these solvents can be problematic because their reuse is often limited due to certain quality 

requirements and regulatory demands [155,156].  

For the production of PES membranes the most commonly used solvents are NMP and DMAc, which 

are both regarded as concerning for human health and the environment [55]. Consequently, there is a 

high interest in replacing these commonly applied solvents through less harmful alternatives. If 

possible, this substitution shall comply with the principles of green chemistry as far as possible. Due to 

the increasing interest in meeting the criteria of green chemistry, several different solvents have been 

tested for their suitability to replace hazardous solvents in the recent past.  

Until now, the most frequently studied alternative solvent is dimethyl sulfoxide (DMSO). It has been 

reported by different research groups that DMSO is a suitable alternative for NMP and DMAc, which 

among other membrane-forming polymers is able to dissolve PES [107,157–160]. Another substance 

which has been frequently studied with respect to its ability for replacing toxic solvents is 

Rhodiasolv®Polarclean (Polarclean). Different scientific works reveal that Polarclean can be regarded 

as a safer alternative, which is able to dissolve PSf, PVDF and PES [55,105,109,161]. More recently, 

Marino et al. reported that Cyrene™ can also be used as an alternative solvent for the preparation of 

PVDF and PES membranes [111]. In comparison to DMSO, the solvents Polarclean and Cyrene™ can 

even be declared as green solvents. Both these solvents are not only non-toxic and biodegradable, but 

they additionally stand out due to their bio-derived source [106,162]. Another suitable bio-derived 

solvent for membrane fabrication is γ-Valerolactone (GVL). It has been shown that GVL is not only 

capable of dissolving PES, but also other polymers such as PSf, cellulose acetate and polyimide 

[109,110]. Beyond the already mentioned alternatives, Rasool and Vankelecom named different other 

bio-based solvents that can be used to prepare membranes with different membrane-forming 

polymers. They all have in common that they are basically different derivatives of glycerol  [110].  

As the REACH regulations and the concept of green chemistry has just recently attracted more 

attention, the knowledge on the potential of less harmful solvents and on the comparison of these 

alternatives to the currently applied hazardous solvents is still limited. In turn, there is a high interest 

in gaining more information about potential new alternative solvents and their suitability for 

substituting hazardous solvents such as NMP and DMAc. 
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4 Experimental Part 

In order to improve the understanding of the membrane formation mechanisms via NIPS, this doctoral 

thesis has been divided up into three different parts. Taken together, these closely related parts 

provide a holistic picture on the membrane formation mechanisms via NIPS. They identify the relevant 

influencing variables and prove that it is possible to substitute toxic solvents through less harmful 

alternatives, while the ability to control the desired properties of the fabricated membranes is 

maintained. Each single part was published separately in a peer-reviewed journal. 

The first part of the work focuses on the thermodynamic aspects, which are relevant for the fabrication 

of polymeric membranes. The location of the miscibility gap of a polymer solution system has a 

significant impact on the membrane formation mechanisms and therefore on the resulting membrane 

structure. Consequently, the determination of the system’s phase diagram at constant pressure and 

temperature is a crucial step for understanding the underlying mechanisms of the structure formation 

process. The information gained from the phase diagram allow the adjustment of the polymer solution 

composition and enable a regulation of the entry point into the miscibility gap, so that the respective 

membrane formation mechanisms can be controlled [1,31].  

In the past, the determination of the binodal curve was either based on theoretical calculations, or it 

was experimentally determined by means of cloud point measurements [114,116]. This still commonly 

used experimental method was already described in 1993 by Boom et al. [48]. However, the cloud 

point method has several drawbacks and further it only provides limited information about the 

essential elements of the phase diagram [119]. Therefore, the aim of the first part of this thesis was to 

develop a new method for characterizing the polymer solution thermodynamics. In comparison to the 

commonly used cloud point method, it shall provide a higher information content and additionally 

overcome the drawbacks of the cloud point approach.  

Consequently, the publication “Thermodynamic analysis of polymer solutions for the production of 

polymeric membranes” (Journal of Molecular Liquids, 2019) focuses on the development of an 

improved method for characterizing the polymer solution thermodynamics [165]. This method is based 

on the induction of phase separation and a following segregation of the demixed polymer solution in 

a test tube. At this, the separation is based on density differences between the two phases, which 

enable a division of both phases by centrifugation. Subsequently, the exact composition of the single 

phases can be determined by using a set of analytical methods. Thus, the method does not only enable 

the determination of the binodal curve, but it also provides valuable information about the tie-lines. 

The publication focuses on the validation of the method, which was performed to determine its 

reproducibility as well as the reliability of the results. Furthermore, this part of the work focuses on a 

comparison between the commonly applied cloud point method and the newly developed procedure. 
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It demonstrates the advantages of the novel method in comparison to cloud point titrations and 

emphasizes the additional information, which can be obtained by application of the novel procedure. 

Apart from the polymer solutions thermodynamics, the kinetics of the phase separation process play 

a significant role for the resulting membrane features [43,116]. Therefore, a good understanding of 

the existing control parameters is crucial for regulating the final membrane properties. 

The kinetics of the NIPS process are strongly influenced by the temperature of the precipitation bath. 

The reason for this is a strong influence of the temperature on the diffusion speed in the non-solvent 

bath, and therefore on the exchange between the solvent from the polymer film and the non-solvent 

from the bath [121,147]. Beyond that, it can also be strongly impacted by the polymer solution 

composition. A change of the dope solution composition can significantly alter the solution viscosity. 

Since the viscosity influences the diffusional speed, it also has an impact on the exchange rate between 

the solvent and the non-solvent [146,163]. Apart from other components of the membrane dope 

solution, such as solvent and non-solvent additives, especially the concentration of the membrane-

forming polymer and of polymeric additives can significantly alter the viscosity and therefore the 

membrane formation kinetics [47]. However, previously reported results on these aspects are 

contradictory and further limited to single systems or variables [43]. 

Furthermore, an emerging topic in membrane technology is the substitution of currently used solvents 

for the production of membranes via phase inversion. Since most of these solvents feature several 

environmental and health risks, it is of high interest to find appropriate more ecologically harmless 

alternatives, which make the membrane production more sustainable [49]. However, the choice of the 

combination of solvent and non-solvent has a high impact on the exchange rate that leads to phase 

separation. In dependence of the affinity and miscibility between solvent and non-solvent, the 

exchange rate can be modified. This in turn impacts the resulting membrane properties [31]. In order 

to gain the desired membrane properties, an understanding of the similarities and differences 

between the membrane formation mechanisms in conventional and alternative solvent systems is 

necessary, where a focus should be the combination of solvent system and other preparation variables. 

This is why the second publication “Membrane formation via non-solvent induced phase separation 

using sustainable solvents: A comparative study” (Polymer, 2020) presents a comparative study on the 

influences of polymeric additives in four different solvent systems on the membrane formation 

mechanisms during immersion precipitation [166]. The work focuses on the polymeric additives PVP 

and PEG, since these are the two most commonly used additives to modify the membrane surface. In 

addition, this part of the work investigates the effects of the additives in dependence of the applied 

solvent. Among these are the two commonly applied solvents NMP and DMAc, as well as the two less 

harmful alternatives 2-pyrrolidone (2P) and dimethyllactamide (DML), which have been chosen as they 

are non-carcinogenic and have not been tested in the context of PES membrane formation before.  
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One focus in this part is laid on the influence of the variables on the polymer solution viscosity. On top 

of that it emphasizes the effects of the variations on several different membrane characteristics, which 

include the membrane permeability, the protein retention capacity, as well as the structure. 

Furthermore, it involves the effects of the variables on the membrane surface characteristics, which 

are evaluated by the unspecific protein binding capacity, the surface contact angle and the specific 

surface area of the membrane prototypes. This part of the thesis demonstrates that the combination 

of the studied parameters is crucial for the effects on the resulting membrane properties. Depending 

on the chosen membrane preparation variables, the resulting membrane properties can be adjusted 

in a controlled manner. Furthermore, this part of the work proves that 2P and DML are suitable 

alternative solvents for PES membrane preparation instead of using NMP and DMAc as solvents. 

As mentioned, the applied solvent and polymer additives are not the only solution components 

influencing the membrane formation process. Other relevant solution components include the 

membrane-forming polymer and its concentration, as well as different non-solvent additives and their 

concentration [31]. Additionally, the precipitation conditions can significantly impact the membrane 

formation process. These conditions include the precipitation bath composition, since the miscibility 

of the non-solvent in the bath and the solvent in the polymer solution determines the exchange speed 

of those two components [164]. On top of that, they also involve the precipitation temperature, as it 

strongly affects the diffusion speed during the mass transfer between the polymer solution and the 

precipitation bath [121]. 

In order to complete the holistic picture of the membrane formation process via NIPS and to 

complement the impacting parameters studied in the parts before, the third publication named 

“Influences of different preparation variables on polymeric membrane formation via non-solvent 

induced phase separation” (Journal of Applied Polymer Science, 2019) focuses on the influence of 

polymer concentration and the concentration of different non-solvent additives in the dope solution, 

as well as on the precipitation conditions on the characteristics of the fabricated membranes [167]. 

Similar as in the previous part, this includes a comparison between the membrane prototypes 

prepared with NMP as a conventional solvent and with 2P as a less harmful alternative solvent. On one 

hand, this publication focuses on the polymer solution characteristics in terms of viscosity and the 

location of the binodal curve. On the other hand, the work demonstrates the influence of the variables 

on several different membrane characteristics. These include the membrane structure, the membrane 

permeability and the retention capability for lysozyme as model protein. This part of the thesis again 

demonstrates that 2P is a suitable alternative for substituting hazardous solvents such as NMP or 

DMAc. Furthermore, it shows that the studied variables have to be taken into account for controlling 

the membrane formation process and that they can be used for adjusting the resulting membrane 

features. 
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4.1 Thermodynamic analysis of polymer solutions 

 

 

Figure 13 Graphical abstract of the publication “Thermodynamic analysis of polymer solutions for the 

production of polymeric membranes” [165]. 

The knowledge of the polymer solution thermodynamics is crucial to understand and adapt the 

membrane formation process during the fabrication of porous membranes [114]. The most important 

thermodynamic properties of a polymer solution system are described by its phase diagram. Especially 

the location of the miscibility gap, which is one of the essential parts of a phase diagram, is of high 

interest for guiding the membrane production process [1,79]. 

In the past, the experimental determination of the miscibility gap boundary, which is also known as 

binodal curve, has been done by cloud point titrations [59,118]. Since a large number of titration 

experiments are necessary to obtain the complete binodal curve, usually only a few experiments were 

conducted and used to extrapolate the remaining part of the curve. However, the method has several 

drawbacks. It is time-intensive and limited by the viscosity of the solution, so that it is only applicable 

for solutions with low polymer concentrations. Furthermore, the extrapolation might result in a curve 

progression that deviates from the real course of the curve, especially at higher polymer 
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concentrations. Another disadvantage is that the method does not give any information about the 

composition of the co-existing phases, which are responsible for the formation of the membrane 

matrix and the pore network [119]. 

Therefore, in this part of the work a novel method was developed, which overcomes the drawbacks of 

the cloud point method. It is based on the induction of phase separation in a test tube by mixing the 

polymer solution and the non-solvent in an appropriate ratio. Due to a density difference, the resulting 

phases can then be separated by centrifugation. Afterwards, each single phase composition can be 

determined by a combination of analytical measurements. Finally, the results can be used to create 

the tie-lines and several tie-lines can be employed for the construction of the binodal curve. 

This publication focuses on the description of the developed method and presents its validation, which 

is based on an exemplary ternary system consisting of NMP, PES and water. As part of the method 

validation it could be shown that the application of the novel method enables the generation of 

reproducible and reliable results with very low deviations. At three different temperatures, the 

determination of replicate samples with the same polymer solution to non-solvent ratios resulted in 

the same phase compositions. Furthermore, a comparison to the cloud point method at three different 

temperatures is presented. It could be shown that up to a certain polymer concentration the 

determination of the binodal curve by both methods provides similar results. In case of the exemplary 

studied system, the thermodynamics were in both cases independent of the phase separation 

temperature. However, at higher polymer concentrations the results of the two methods deviated 

from each other. The observed deviations can be attributed to the additional information content 

which is provided by the novel method. It was concluded that in case of the novel method the 

solidification boundary is indicated in the deviating area, whereas it is not possible to obtain these 

information from cloud point titrations. While the indicated solidification boundary was found to be 

below 50 wt.% PES at 10 °C, it was found to be above 50 wt.% PES at 20 °C and at around 60 wt.% at 

40 °C. Therefore, although the location of the binodal curve was not found to be temperature-

dependent, the onset of the solidification can be influenced by the temperature. Another factor, which 

was found to be temperature-dependent, is the distribution of the PES chain sizes in the polymer-poor 

phase. This is also an additional information, which can only be gained from the novel procedure. It 

was found that the average molecular weight in the polymer-poor phase increased from around 6 kDa 

to above 10 kDa when the temperature was raised from 10 °C to 40 °C. 

To conclude, it was possible to develop and validate a novel method for the characterization of the 

polymer solution thermodynamics. In contrast to the commonly applied cloud point method, it enables 

an improved characterization and provides a higher information content. The information can be used 

to develop new casting solutions and to improve the process control of membrane production. 
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Table S1 Standard deviations and expected deviations from the average share of each component of the 

ternary system NMP/PES/water in the polymer-lean and the polymer-rich phases at 10 °C, 20°C and 40 °C. 

Ingredient  
Temperature 

[°C] 
Phase 

Standard deviation 
[wt.%] 

Expected deviation 
[wt.%] 

NMP 

10 
lean 0.22 1.00 

rich 0.29 1.35 

20 
lean 0.09 1.11 

rich 0.66 1.64 

40 
lean 0.27 0.98 

rich 0.98 1.61 

Water 

10 
lean 0.22 0.29 

rich 0.43 0.35 

20 
lean 0.09 0.40 

rich 0.34 0.58 

40 
lean 0.28 0.28 

rich 0.63 0.63 

PES 

10 
lean 0.01 0.02 

rich 0.43 1.51 

20 
lean 0.01 0.02 

rich 0.78 1.60 

40 
lean 0.02 0.03 

rich 0.46 1.51 

 

 

Table S2 Average composition with standard and relative deviation of the polymer-poor and the polymer-

rich phases after phase separation of the fourfold repeated tie-line determination at different temperatures. 

Temperature Ingredient 

polymer-poor phase polymer-rich phase 

Proportion 
[wt.%] 

SD   
[wt.%] 

RD       
[%] 

Proportion 
[wt.%] 

SD    
[wt.%] 

RD       
[%] 

10 °C 

NMP 83.86 0.22 0.26 45.99 0.29 0.62 

Water 15.87 0.22 1.40 8.66 0.49 5.64 

PES 0.26 0.01 3.71 45.35 0.43 0.95 

20 °C 

NMP 83.92 0.09 0.10 44.78 0.66 1.48 

Water 15.77 0.09 0.58 7.62 0.34 4.41 

PES 0.32 0.01 3.60 47.61 0.78 1.65 

40 °C 

NMP 83.63 0.27 0.32 45.55 0.98 2.15 

Water 15.98 0.28 1.77 9.29 0.63 6.76 

PES 0.39 0.02 4.28 45.15 0.46 1.02 
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The expected experimental inaccuracies were calculated by 

𝛥𝑤𝑖 =
100 %

𝑚𝐴
 × 𝛥𝑚𝑖 +   

𝑚𝑖 × 100 %

𝑚𝐴
2

 × 𝛥𝑚𝐵 

where 𝛥𝑤𝑖 is the expected experimental deviation in wt.%, 𝑚𝐴 is the mass of the sample which 

was applied for the analytical determination of the component by GC or SEC, 𝑚𝑖 is the mass 

of the ingredient which was measured, and 𝛥𝑚𝐵  is the mass deviation caused by the 

inaccuracies of the balance. Furthermore, 𝛥𝑚𝑖  is the mass deviation of the respective 

component which was calculated by  

𝛥𝑚𝑖 =
𝑤𝑖

100 %
 ×  𝛥𝑚𝐵 +  

𝑚𝑡

100 %
 ×  𝜎𝐴 

where 𝑤𝑖  is the determined proportion of the component in wt.%, 𝛥𝑚𝐵  is the inaccuracy 

caused by the weighing steps, 𝑚𝑡 is the total sample amount in case of PES, or the total 

sample amount without the polymer content for NMP and water, and 𝜎𝐴  is the standard 

deviation of the analytical steps.  For the SEC 𝜎𝐴 was calculated from the deviations of the 

slope and the y-intercept of calibration regression, while for the GC 𝜎𝐴 was calculated from the 

deviations of the double determination. 

At all temperatures the standard deviation of every single component was lower than the 

expected deviation due to measuring inaccuracies, which takes into consideration that the 

method involves several gravimetric and analytical steps. Although the polymer-rich phase 

showed slightly higher deviations in comparison to the other phase, a good reproducibility was 

still given as the deviations between the four samples were in an acceptable range. This can 

be concluded from that fact that the expected deviations which can arise from experimental 

inaccuracies were again higher than the actual measured deviations (Table S2). 
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4.2 Influences of polymeric additives in different solvent systems 

 

 

Figure 14 Graphical abstract of the publication “Membrane formation via non-solvent induced phase 

separation using sustainable solvents: A comparative study” [166]. 

The previous section focused on the thermodynamic aspects of the membrane formation process. 

However, the fabrication of membranes via NIPS is not only dependent on the thermodynamics of the 

system, but it is also significantly affected by the kinetics of the process [43]. One important set of 

parameters for controlling the thermodynamics and kinetics of the NIPS process is the composition of 

the membrane dope solution. Apart from the polymer, the solvent and the non-solvent, the addition 

of polymeric additives can be used to alter the characteristics of the resulting membranes [31]. 

In order to improve the understanding of the underlying mechanisms of NIPS and the effects of the 

dope solution composition on the characteristics of PES membranes, this part of the work focuses on 

the influences of the two commonly applied polymeric additives PVP and PEG in four different solvent 

systems. Among the four studied solvents are the two commonly applied solvents NMP and DMAc. 

Since they are both toxic and environmentally unfriendly, it is highly desirable to substitute them 

through ecologically less harmful alternatives. However, a substitution of the solvent, whilst achieving 

the same desired membrane characteristics, is very challenging. This is why 2P and DML were tested 
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for their potential to substitute the currently used toxic solvents. These particular solvents were 

chosen as they are considered to be non-carcinogenic and have not been tested with respect to their 

suitability to substitute NMP and DMAc in PES membrane fabrication before. As discussed previously, 

the reason for examining the effects of the polymeric additives in these solvents systems is that 

previously reported results in the literature on this topic are contradictory. Especially among different 

dope solution systems the effects observed by different groups are conflicting.  

To gain a holistic picture on both variables in combination, the additive influences and the choice of 

the solvent, systematic variations of PVP and PEG were carried out in each of the four different solvents. 

The dope solutions with varying compositions were used to prepare PES membranes via NIPS and the 

resulting membrane characteristics were investigated. The studied membrane properties include the 

structure, the permeability, the lysozyme retention capability and the surface characteristics of the 

membrane prototypes. Among the surface characteristics, the applied characterization methods 

involve the unspecific lysozyme binding to the membrane surface, the surface contact angle and the 

specific surface area of the membrane. Additionally, the viscosity of each dope solution was 

determined, since it can impact the exchange speed of solvent and non-solvent, which finally leads to 

the demixing of the solution. Another reported result is the comparison of the needed water amount 

in each of the four solvent systems to induce the phase separation in a 5 wt.% PES solution. 

It was found that the dope solution viscosity is influenced by increasing the concentration or the 

molecular weight of PVP and PEG. Since the increased viscosity slows down the diffusional exchange 

between solvent and non-solvent, the membrane formation process is altered. This is especially 

indicated by the observed changes in the membrane characteristics. It was found that structure, 

permeability, protein retention capability and surface properties of the membranes were strongly 

influenced by changes in additive concentrations or molecular weights. Especially the PVP variations 

strongly impacted the membrane characteristics, which can be explained by the greater influence of 

the PVP variations on the solution viscosity. In case of PEG, the effects were much less pronounced or 

even not present, which can arise from the observed lower effect of PEG on the solution viscosity. 

Furthermore, it could be found that the effects partially differed between the conventional and the 

alternative solvents. The influences of the additive variations were found to be higher in case of the 

application of the chosen alternative solvents. Therefore, the adjustment of the polymeric additives is 

an appropriate controlling parameter for obtaining the desired membrane properties. 

To conclude, the results of the experiments indicate that both, solvents and polymeric additives, can 

significantly impact the membrane properties. The reason for this is that they can alter the mass 

transfer during NIPS, which in turn leads to modified kinetics of the membrane formation process. 

Furthermore, the comparative study proves that 2P and DML are suitable more ecologically harmless 

alternatives for replacing NMP and DMAc as solvents for the preparation of PES membranes. 
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4.3 Influences of casting solution composition and precipitation conditions 

 

 

Figure 15 Graphical abstract of the publication “Influences of different preparation variables on membrane 

formation via non-solvent induced phase separation in dependence of the applied solvent system” [167]. 

As one aspect, the thermodynamic characterization of polymer solution systems was focused in this 

work. As another aspect, the influences of polymeric additive variations in different solvent systems 

on the resulting membrane characteristics was studied. However, the thermodynamics and kinetics 

cannot only be impacted by polymeric additives, but also by other components of the polymer solution 

system [31]. Furthermore, the precipitation conditions play a crucial role for membrane formation, 

since they can modify the kinetics of the membrane formation process and therefore the resulting 

membrane characteristics [164]. Since previous studies on these aspects only focused on conventional 

solvent systems like NMP and DMAc, this part of the thesis presents a comparative investigation of the 

effects of the known controlling factors, which have not already been focused in the previous section. 

These parameters include the polymer concentration and the addition of differently concentrated 

additives to the membrane dope solution, as well as the precipitation conditions in terms of the 

temperature and the composition of the non-solvent bath. 
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As already emphasized, the substitution of toxic solvents like NMP is highly desirable. However, as it 

has already been shown in the previous section, the impacts of variations in the preparation 

parameters during NIPS are not straightforward. It was found that the effects of the polymeric additive 

variations partially differed between conventional solvents and less harmful alternative solvents. This 

is why this part of the work demonstrates a comparative study between NMP as conventional solvent 

and 2P as ecologically more harmless alternative, each solvent representatively for the group of 

hazardous and alternative solvents. 

Similar as in case of the study on the polymeric additives, systematic variations of the focused 

parameters were performed during membrane fabrication via NIPS. The dope solutions, which were 

prepared with variations in their composition, were characterized in terms of their viscosity for each 

of the two solvent systems. Furthermore, the miscibility gap of both systems was compared to each 

other. The subsequently prepared membrane prototypes were characterized in terms of structure and 

performance. Therefore, cross-section images of the membrane structures were recorded and 

analyzed. Furthermore, permeability and lysozyme retention measurements were performed and the 

results were compared among each other in dependence of the focused variables.  

It was found that the general structure differs between the two solvent systems. While the NMP 

membranes exhibited a closed-cellular structure, 2P membranes featured a bicontinuous morphology. 

With respect to the location of the miscibility gap, this can be explained by different entry points into 

the heterogeneous region, which differ in dependence of the applied solvent and therefore cause 

dissimilar decomposition mechanisms. Furthermore, it could be shown that independently of the used 

solvent the presence of macrovoids can be controlled by the addition of either water, glycerol or acetic 

acid as non-solvents to the solution, by the application of lower precipitation temperatures, or by the 

addition of a weaker non-solvent to the precipitation bath.  

In contrast to their similar effect on the structure, the performance data in this part reveal that the 

impact of the non-solvent concentration in the dope solution and the impact of the varying 

precipitation conditions differ between the two studied solvent systems. In this case, the only 

exception is the polymer concentration, which in both solvent systems caused a decline of the 

permeability and a simultaneous increase of the protein retention, when it was raised. 

To conclude, this part of the thesis again proves that 2P is a suitable less harmful alternative for 

hazardous solvents like NMP. Furthermore, the effects of the missing relevant process parameters 

were identified to complement the impact of the variables studied in the previous section of this thesis. 

It could be shown that all studied variables in this section are suitable control parameters for modifying 

the properties of the resulting membranes. Therefore, this part presents a valuable contribution to the 

holistic picture, which should be created through this doctoral thesis.  
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5 Summary and Conclusion 

Nowadays, polymeric membranes produced by immersion precipitation are widely applied in different 

areas of application. Depending on the ultimate field of operation, certain demands are placed onto 

the membranes. However, in order to enable the fabrication of membranes with desired features, the 

membrane formation process has to be well-understood. Although several studies have been 

conducted in the past on membrane formation via phase inversion, the results of different research 

groups are somewhat contradictory. Furthermore, the emerging topic of substituting hazardous 

solvents through less harmful alternatives requires continuing studies involving the potential 

alternative solvents and which therefore further increase the insight into the process fundamentals. 

This is why the motivation of this work was to gain an improved understanding of the mechanisms, 

which impact membrane formation via non-solvent induced phase separation. Since the replacement 

of hazardous solvents is currently a critical topic, one of the main focuses was laid onto the comparison 

of the investigated membrane formation variables between conventional and alternative solvents. 

To reach the formulated goal of this work, a holistic study of the influencing process control parameter 

was designed. Therefore, the work was divided up into three different parts, which focused on 

different key aspects. All together, these three parts should cover the two crucial process 

fundamentals, which include the thermodynamic aspects of the membrane formation process on one 

hand and the kinetic aspects of this process on the other hand. 

As one main aspect, the characterization of the polymer solution thermodynamics was emphasized. 

Since the previously applied common methods bring along several disadvantages, a novel method for 

the determination of the polymer solution phase diagrams was developed. In the frame of a method 

validation it could be shown that the novel procedure provides reproducible and reliable results. 

Furthermore, an exemplary ternary system of PES/NMP/water was investigated and the outcomes 

between the state-of-the-art cloud point method and the novel procedure were compared. It could be 

shown that both methods result in a similar location of the miscibility gap. However, it was proven that 

the novel method provides more information about the polymer solution thermodynamics than the 

cloud point procedure. Apart from the location of the binodal curve, it was confirmed that the exact 

phase compositions can be determined by the novel method. On top of that, further information 

delivered by the developed procedure include an indication of the solidification boundary and an exact 

allocation of the polymer molecular weight distribution in the two phases. Therefore, the developed 

method contributes to an advanced understanding of the system of interest, which in turn can be used 

to improve the control of the membrane formation process. It is a valuable tool for characterizing new 

polymer solution systems, especially with respect to a solvent substitution, and therefore contributes 

to the development of new solutions for the fabrication of membranes via immersion precipitation. 
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Nonetheless, the thermodynamics of a system cannot be considered alone for the design of the 

respective membrane formation process. This is why another main focus was laid onto the different 

process parameters, which can be varied during membrane fabrication via NIPS. These variables does 

not only influence the thermodynamics, but also the kinetics of the membrane formation process.  

It could be shown that both, the polymer solution composition as well as the precipitation conditions 

are suitable process parameters for controlling the resulting membranes features. The variables, which 

can be used to affect the formation process with respect to the dope solution composition, were found 

to involve the concentrations and molecular weights of the additives PVP and PEG, the concentration 

of the membrane-forming polymer, and the use of the non-solvents water, glycerol or acetic acid in 

different concentrations. While the effects observed for PEG additions were rather small, all other of 

these parameters were demonstrated to offer a powerful opportunity for controlling the membrane 

characteristics and therefore for obtaining membranes with any required features. On top of that, it 

could be proven that both, the precipitation temperature and the precipitation medium in the non-

solvent bath, are two further powerful tools to adapt the kinetics of the NIPS mechanisms and 

therefore to control the properties of the resulting membranes. Apart from the already mentioned 

variables, however, it was shown that one of the most significant impact factors is the choice of the 

solvent used for the preparation of the membrane dope solutions. It was demonstrated that the 

exchange of the solvent, without adapting the rest of the solution composition, can change the 

fundamental mechanisms occurring during NIPS.  

Since the substitution of hazardous solvents through non-carcinogenic alternatives is currently of high 

interest, the results gained from this work are of high relevance. Usually, the existing membrane 

products have to maintain their previous structures and performances, although one component of 

the dope solution they are prepared of is substituted by another one. Therefore, this work presents a 

valuable pool of different possibilities for controlling the changes caused by a solvent substitution, in 

order to maintain the demanded membrane features. On top of that, this thesis presents 2P and DML 

as two novel alternative solvents for the preparation of PES ultrafiltration membranes. 

All in all, the findings of this work provide a broader mechanistic understanding of the membrane 

formation process via immersion precipitation and the underlying thermodynamic and kinetic 

processes. Therefore, the knowledge gained from this work, which was performed in a laboratory scale, 

can be transferred to the production of membranes in a pilot or production scale. This can on one hand 

be used in case of the substitution of a hazardous solvent through a less harmful alternative. However, 

the outcomes of these works can also be used to optimize the structure or performance of existing 

membranes, or to develop completely new membrane fabrication processes for the launching of 

advanced membrane products to the existing ultrafiltration market. 
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7 Appendix 

7.1 List of Abbreviations 

°C Centigrade 

µm Micrometer 

2P 2-pyrrolidone 

Da Daltons 

DMAc Dimethylacetamide 

DMF Dimethylformamide 

DML Dimethyllactamide 

DMSO Dimethyl sulfoxide 

EIPS Evaporation induced phase separation 

FDA Food and Drug Association 

kDa Kilodaltons 

mPa∙s Millipascal seconds 

NIPS Non-solvent induced phase separation 

nm Nanometer 

NMP N-methyl-2-pyrrolidone 

PA Polyamide 

PEG Polyethylene glycol 

PES Polyethersulfone 

pH Potentia hydrogenii (power of hydrogen) 

Polarclean Rhodiasolv®Polarclean 

PSf Polysulfone 

PVDF Polyvinylidene fluoride 

PVP Polyvinylpyrrolidone 

REACH Regulation, evaluation and authorization of chemicals 

TIPS Temperature induced phase separation 

VIPS Vapor induced phase separation 

wt.% Weight percent 
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