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Abstract

To every cubic hypersurface X we associate the parameter space of lines contained in X; this
is called the Fano scheme of lines on X and denoted F (X). If X admits an isolated singular
point of ADE-type, we prove that F (X) admits hypersurface singularities of the same type
transversally along the regular part of its singular locus. As was shown by H. Clemens and
P. Griffiths, the Albanese variety Alb(F (X)) of the Fano scheme of lines F (X) on a smooth
cubic threefold X is isomorphic to the intermediate Jacobian IJ(X) of X. G. van der Geer and
A. Kouvidakis generalised this result to nodal cubic threefolds, replacing the Albanese variety
Alb(F (X)) by the Picard scheme Pic0(F (X)).

We study more generally degenerations of the Picard scheme Pic0(F (X)) when the smooth
cubic threefold X degenerates to a cubic threefold with unique singular point of type Ak and
prove that these degenerations define points in Mumford’s partial compactification A′5 of the
moduli space A5 of principally polarised Abelian varieties of genus five.
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Introduction

One of the most famous results in algebraic geometry asserts that any smooth cubic surface
over the field of complex numbers, i.e. every hypersurface of degree three in P3= P3

C, contains
precisely 27 lines. The first one to study the parameter space F (Y ) of lines on a hypersurface
Y was G. Fano in his 1904 articles [Fan04a,Fan04b]. This parameter space is nowadays named
after him and called the Fano scheme of lines.
The classical result on the 27 lines on a smooth cubic surface translates into the language of
Fano schemes as the fact that the Fano scheme of lines F (X) on a smooth cubic hypersurface
X ⊂ P3 is zero-dimensional, reduced and of degree 27. Many of the classical geometers also
computed the number of lines on cubic surfaces with an isolated double point; their results
have been summarised in 1869 by A. Cayley [Cay69] and it can be deduced from his results
that every cubic surface contains a line, but the number of lines decreases with the presence
of singular points. For example, on a cubic hypersurface with an ordinary double point, one
finds precisely 21 lines. On the other hand, the degree of the Fano scheme of lines on a cubic
surface can still be seen to be 27, see [EH16] for a modern treatment, meaning that some of the
lines on a singular cubic surface should be considered with multiplicity. For the Fano scheme of
lines on a singular cubic surface this means that it can no longer be reduced. A modern survey
of the geometrical considerations to compute the number of lines on singular cubic surfaces is
given by I. Dolgachev in his book [Dol12]. Regardless of using classical or modern methods
to compute the multiplicity of points of the Fano scheme of lines on a cubic surface, it is not
explained why exactly these multiplicities occur besides the fact that they do occur. At least
the classical geometers for example often derived the multiplicity of certain points of the Fano
scheme of lines on a singular cubic surface only by knowing that the sum of the multiplicities
should be 27 in the end.

Aside from the classical treatment of lines on cubic surfaces, the Fano scheme of lines did
not receive much attention for some time after its introduction, but people began to study
cubic threefolds, i.e. cubic hypersurfaces in P4, more intensively in the late 1960s. In 1973,
H. Clemens and P. Griffiths [CG73] made use of the Fano scheme of lines again and showed
that for a smooth cubic threefold X the intermediate Jacobian IJ(X) of X is isomorphic to the
Albanese variety of the Fano scheme of lines F (X),

IJ(X) ∼= Alb(F (X)). (I)

This result plays a central role in their proof of irrationality of all smooth cubic threefolds. They
also considered the Fano scheme of lines on a cubic threefold with a single node. Afterwards, in
1977, A. B. Altman and S. L. Kleiman [AK77] published a general treatment of Fano schemes
of lines on hypersurfaces of arbitrary degree and even over arbitrary algebraically closed fields
and A. Collino and J. P. Murre reproved the result of H. Clemens and P. Griffiths using purely
algebraic methods in their 1978 paper [CM78]. In the same year, W. Barth and A. van de Ven
[BV78] showed that for a smooth cubic hypersurface X ⊂ Pn the Fano scheme of lines F (X)
always is non-empty, connected, and smooth of dimension 2n− 6.
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Introduction

The natural question, how the varieties on both sides of (I) degenerate if the cubic threefold
X degenerates to a singular one, has not been treated for more than thirty years after. In 2009,
S. Casalaina-Martin and R. Laza studied cubic threefolds from a moduli-theoretic perspective
and became interested in degenerations of the intermediate Jacobian of a cubic threefold. As
one of their results in [CL09], they were able to show that the intermediate Jacobian of a cubic
threefold degenerates to a point in Mumford’s partial compactification A′5 of the moduli space
A5 of principally polarised Abelian varieties of genus five, if the cubic threefold admits a unique
singular point of type Ak (k ≤ 5) or D4. In particular, the intermediate Jacobian of any such
cubic threefold is either given by a product of Jacobians of smooth curves or by a C∗-extension
of such a product and they were able to determine the respective extension data in many cases.
The degeneration of the right-hand side of (I) has been studied in the simplest case, i.e. when
the cubic threefold degenerates to a nodal one, by G. van der Geer and A. Kouvidakis in their
2010 article [vK10], replacing the Albanese variety of F (X) by its Picard scheme. This can be
done since the isomorphism (I) provides a principal polarisation on the Albanese variety of F (X)
and this principal polarisation establishes an identification of Alb(F (X)) with its dual Abelian
variety Pic0(F (X)). As was to be expected, their result is the same as the corresponding result
on the intermediate Jacobian of such a cubic threefold in [CL09].
In 2015, S. Casalaina-Martin, S. Grushevsky, K. Hulek and R. Laza [CGHL15] generalised the
results from [CL09] to cubic threefolds with arbitrary isolated ADE-singularities, and established
a general framework to compute such degenerations along with the corresponding extension
data. In particular they classified all degenerations of intermediate Jacobians of cubic threefolds
of torus rank one and two. Using their general framework, many cases have been worked out in
detail by K. Havasi in his 2016 thesis [Hav16].

Recently, in 2017, the Fano scheme of lines on a cubic fourfold with isolated ADE-singularities
has been studied by R. Yamagishi [Yam17a] as an example of a singular symplectic variety in
the sense of Beauville [Bea00].

This thesis aims to complete the study of degenerations of the varieties in (I) by contributing
the study of degenerations of the right-hand side of (I), replacing the Albanese variety by the
Picard scheme, just as G. van der Geer and A. Kouvidakis did in [vK10], but besides that by
different methods. Our main result on the degenerations of the Picard scheme of the Fano
scheme of lines F (X) of a cubic threefold X is the following.

A Theorem (Degenerations of the Picard scheme, Theorem 3.34). Let X be a cubic threefold
with a unique singular point of type Ak, let π : F→ B be a smoothing (in the sense of Definition
2.1) of F0 = F (X) over a smooth curve B and denote by π′ : F′ → B the tail reduction of
π : F → B. Then, the degenerate Picard scheme, see Definition 2.17, of F0 with respect to the
family π : F→ B is uniquely determined by Pic0(F′0) which has the form

1 −→ K −→ Pic0(F′0) −→ Pic0(Σν)× Pic0(T ) −→ 0,

where T is a smooth curve of genus g(T ) =
⌈
k−1

2

⌉
and Σ is a curve associated to X in a natural

way. Moreover,

K =

{
C∗, if k is odd;

0, if k is even.

The curve T in the theorem above and therefore the degenerate Picard scheme of a cubic
threefold X with a unique singular point of type Ak, depends on the initially chosen smoothing
of F (X), though its genus does not.

Our work is structured as follows. We begin the first chapter by collecting some well-known
results about cubic hypersurfaces and their Fano schemes of lines. As very little is known about
singularities of the Fano scheme of lines on a cubic hypersurface, we investigate the relation
between the singularities of X and those of F (X), and show that there is such a relation
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(Theorem 1.29), a fact that is not obvious and in general false for hypersurfaces of degree
different from three. This is done by developing a systematic approach for detecting types of
hypersurface singularities, based on previously known results in singularity theory due to V. I.
Arnold [Arn73,Arn74] and methods due to J. W. Bruce and C. T. C. Wall [BW79] used in their
classification of cubic surfaces. We are able to give an algorithm that is capable of computing
conditions on the coefficients of a polynomial P defining a hypersurface Y = {P = 0} that are
equivalent to (Y, 0) being of a certain singularity type (Theorem 1.15). It follows from our local
computations that the singular locus of F (X) is isomorphic to a complete intersection Σ of type
(2, 3) that is associated to every singular cubic hypersurface in a natural way, and we show that
for all l ∈ Σreg the singularity (F (X), l) is a hypersurface singularity whose type is independent
of the point l . Using the systematic approach developed earlier, we compare the singularity
types of X at its singular point p0 and of F (X) at a point l ∈ Σreg and obtain the following
theorem on the relation between singularities of X and F (X).

B Theorem (Singularities of Fano schemes of lines on cubic hypersurfaces, Theorem 1.29). If
X ⊂ Pn is a cubic hypersurface with unique singular point p0 of type Ak, the types of (X, p0)
and (F (X), l) are the same for all l ∈ Σreg.

This generalises the analogous result by R. Yamagishi on singularities of the Fano scheme
of lines on a cubic fourfold with isolated ADE-singularities, cf. [Yam17a]. His proof relies on
methods from symplectic geometry which are only available in the particular case he treated.

In chapter two we recall the theory of semistable reduction for families of curves. In particular,
we recall a constructive proof due to J. Harris and I. Morrison [HM98] from which a semistable
reduction for families of curves can be computed explicitly (Theorem 2.3). As an example,
we compute the degenerate Picard scheme for curves with unique singular point of type Ak
(Corollary 2.19). Afterwards, we prove that the steps from the explicit proof of semistable
reduction for families of curves can be generalised to families of varieties with curve singularities
transversally along a smooth singular locus (Theorem 2.22). As it is unclear in which, if any,
sense the result will be semistable, this procedure is called tail reduction.

C Theorem (Tail reduction for transverse curve singularities, Theorem 2.22). Let π : Z → B
be a flat family of varieties over a smooth curve B such that Zb = π−1(b) is smooth for b 6= 0 and
such that Z0 has smooth singular locus S0 ⊂ Z0 and a curve singularity of type Ak transversally
along S0. Then, there exists a branched cover ϕ : B′ → B totally ramified over 0 ∈ B and a flat
family of varieties π′ : Z′ → B′ that differs from π : Z → B only in the central fibre and such
that the central fibre Z′0 ⊂ Z′ is reduced with smooth components intersecting transversally.

By applying this to smoothings of Fano schemes of lines on cubic threefolds with a unique
singular point of type A1 or A2, we obtain Theorem A for these special cases.

Chapter three contains the proof of our main result about the degenerations of the Picard
scheme of F (X) for a cubic threefold X. We begin by generalising a construction due to A.
Collino and J. P. Murre [CM78] of a morphism ϕ : Sym2(Σ)→ F (X) from the symmetric square
of a curve Σ naturally associated to a cubic threefold X with unique singular point of type A1

to its Fano scheme of lines F (X) by proving that the blowup of F (X) along its singular locus
results in Hilb2(Σ).

D Theorem (Theorem 3.5). Let X ⊂ Pn be a cubic hypersurface with unique singular point of
type Ak. Denote by Σ the associated complete intersection isomorphic to the singular locus of
F (X). Then there exists a natural map ϕ : Hilb2(Σ)→ F (X) that coincides with the blowup of
F (X) along Σ.

We also provide a concrete geometric description of this map. As we need to compute a
resolution of singularities of the Fano scheme of lines on a singular cubic threefold explicitly
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in the process of computing a tail reduction, we study resolutions of the Hilbert square of a
singular curve. Just as the Fano scheme of lines on a singular cubic hypersurface, the Hilbert
square of a singular curve in general has singular locus which is itself singular. We exhibit the
local structure of the Hilbert square of a singular curve near the singular points of its singular
locus to derive the following theorem which seems to be interesting on its own.

E Theorem (Theorem 3.23). Let Y be a curve admitting a unique singular point y0 of type

Ak, k ≥ 3, and denote by π : ˜Hilb2(Y ) → Hilb2(Y ) the blowup of Hilb2(Y ) along its singular
locus. Then,

( ˜Hilb2(Y ), p) ∼= (Hilb2(Ỹ ), q),

where p and q denote the singular points of the respective singular loci and Ỹ is the blowup of
Y at its singular point.

The statement of Theorem E was available in the literature, see [Yam17b], but the proof given
there turns out to be incorrect.
Using this result we are then able to compute a resolution of the Fano scheme of lines on a
singular cubic threefold by successive blowups along its singular locus explicitly (Theorem 3.34)
and to deduce Theorem A.

Our final chapter four hints at generalisations of statements in this thesis and starting points
for further research. We also give an intrinsic explanation of the multiplicities of the points of
F (X) when X is a singular cubic surface, i.e. explain why these multiplicities occur.
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1 Singularities of the Fano scheme of lines on a
cubic hypersurface

In this chapter we give the definitions of our main objects along with some known or easy to
prove results that we will use throughout this thesis. We also give an algorithm that can be
used to recognise singularity types from the defining equation of a hypersurface singularity. By
considering local equations for cubic hypersurfaces in a specific normal form, we deduce that
the Fano scheme of lines on this cubic has transversal singularities along the smooth part of
its singular locus. After computing local equations for the Fano scheme of lines on a cubic, we
show that our algorithm can be utilised to recognise the transversal singularity type of the Fano
scheme of lines from its defining equations. By comparing the results for a cubic hypersurface
with those for its Fano scheme of lines, we are then able to prove that the transversal singularity
type of the Fano scheme of lines is the same as the singularity type of the cubic. The last section
then explains some simplifications we have made when handing the problem to a computer. We
always work over C, the field of complex numbers.

1.1 Generalities on singular cubic hypersurfaces and their Fano
scheme of lines

We begin by introducing the basic notions and objects that we will use in this thesis. Along
these lines, we recall known facts and use this opportunity to develop our notation. Besides
some introductory examples, we are always interested in cubic hypersurfaces. These are irre-
ducible subschemes X = {f = 0} ⊂ Pn of the projective space defined by a single homogenous
polynomial f of degree three. To every cubic hypersurface or, more generally, to any projective
variety Y ⊂ Pn, we can associate the Fano scheme of lines F (Y ) on this hypersurface which is
the fine moduli space parameterising the one-dimensional linear subschemes l ⊂ Y of the given
variety Y . In other words, viewing F (Y ) as a set, it is

F (Y ) = {l ⊂ Pn | l is a line contained in Y }.

The scheme structure on F (Y ) comes from viewing it as moduli space. This is done by means
of Hilbert schemes and we now briefly recall their general definition. Let P be a polynomial
in one variable and let hP be the contravariant functor from the category of schemes into the
category of sets,

HP : Sch −→ Set,

that sends a scheme B to

HP (B) =

{
flat families Y ×B ⊃ Z b−→ B of subschemes of Y ,

such that the fibres have Hilbert polynomial P

}
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

and a morphism α : B → B′ of schemes to

HP (α : B → B′) : (Y ×B′ ⊃ Z ′ b′−→ B′) 7→ (Y ×B ⊃ Z = α∗Z ′
pr1−→ B),

where by pr1 we denote the projection onto the first factor.

By a well-known result due to A. Grothendieck, [Gro62], the functor HP can always be
represented by a scheme denoted HilbP (Y ) and which turns out to be a fine moduli space
parameterising the subschemes of Y having Hilbert polynomial P .

1.1 Definition. Let n ∈ N and Y ⊂ Pn be a scheme.

(i) Gr(k,Pn) := HilbP (Pn), where P (m) =
(
m+k
k

)
, is called the Grassmannian of k-planes in

Pn. In particular, Gr(1,Pn) is called the Grassmannian of lines in Pn.

(ii) F (Y ) := HilbP (Y ), where P (m) = m+ 1, is called the Fano scheme of lines on Y and a
natural subscheme of Gr(1,Pn), the Grassmannian of lines in Pn.

Some well-known examples of Fano schemes of lines include the following.

1.2 Examples. (i) Let Y ⊂ P3 be a smooth quadric surface. Then F (Y ) is isomorphic to a
disjoint union of two smooth conics Q1, Q2 ⊂ P2. Each of these conics can be identified
with the image of the second Veronese embedding ν2 : P1 → P2, thus is isomorphic to P1.
This reflects the fact that on a smooth quadric surface we find two different rulings, each
of the rulings being given by a P1 of lines. For a detailed discussion of this example see
[EH00, IV.3.2].

(ii) Let Y be the Fermat quartic in P4, i.e. the hypersurface

Y = {z4
0 + z4

1 + z4
2 + z4

3 + z4
4 = 0} ⊂ P4.

Then F (Y ) has 40 irreducible components and each of these components is everywhere
nonreduced, see [EH16, Example 6.69].

(iii) Let X ⊂ P3 be a smooth cubic surface. Then F (X) consists of 27 reduced points, reflecting
the well-known fact that every smooth cubic surface contains 27 lines.

We see that in general there is no reason to expect any relation between singularities of a
hypersurface Y and those of its Fano scheme of lines F (Y ). The purpose of this chapter is to
prove that if Y = X is a cubic hypersurface with a unique singular point of type Ak for some
k, then the singularities of F (X) can be described in dependence of the singularities of X.
As a first result in this direction we state the following result due to W. Barth and A. Van de
Ven. The proof given here is a more detailed version of their original proof.

1.3 Lemma ([BV78, Corollary 4]). Assume that n ≥ 3 and let X = {f = 0} ⊂ Pn be an
irreducible cubic hypersurface. Let l ⊂ X be a line not passing through any of the singular
points of X. Then, l is a smooth point of the Fano scheme of lines on X. In particular, if X
is smooth, F (X) is also smooth.

Proof. It is well-known, see for example [EH16, Theorem 6.21], that the tangent space to F (X)
at a point l ∈ F (X) is

TlF (X) = H0(X,Nl/X), (1.1)

where Nl/X denotes the normal sheaf of l in X. As the expected dimension of F (X) is 2(n−3),
see [EH16, Proposition 6.1], we need to show that H0(X,Nl/X) has dimension 2(n− 3) in order
to prove the assertion. To do so, consider the normal sheaf sequence of l in X,

0 −→ Nl/X −→ Nl/Pn −→ NX/Pn
∣∣
l
−→ 0. (1.2)
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1.1 Generalities on singular cubic hypersurfaces and their Fano scheme of lines

A proof of exactness of this sequence is given in [EH16, Proposition 6.15]. Since l lies in the
smooth locus of X, the normal sheaves are actually vector bundles, and since l ∼= P1, they all
split as a direct sum of line bundles Ol(k). Our exact sequence (1.2) thus can be viewed as

0 −→
n−2⊕
i=1

Ol(ki) −→
n−1⊕
i=1

Ol(1) −→ Ol(3) −→ 0 (1.3)

where we used that X has degree three and that a line in Pn is given by n− 1 linear equations.
Since the first arrow in (1.3) is injective, ki ≤ 1 holds for all i ∈ {1, . . . , n − 2}. It is simple
to compute the first Chern class for the bundles in this sequence using that c1(A ⊕ B) =
c1(A) + c1(B) for vector bundles A,B and that c1(OPn(d)) = d. Doing so gives

n−2∑
i=1

ki = n− 4,

thus ki ≥ −1 for all i ∈ {1, . . . , n− 2}. Since H1(P1,OP1(d)) = 0 for d > −2, we can conclude

that H1(Nl/X) =
n−2⊕
i=1

H1(Ol(ki)) = 0. The cohomology sequence of (1.3) contains

0 // H0(Nl/X) // H0(Nl/Pn) // H0(NX/Pn
∣∣
l
) // H1(Nl/X)

TlF (X) C2(n−1) C4 0

and therefore, dimTlF (X) = 2(n− 1)− 4.

Thus, whenever X is an irreducible cubic hypersurface, F (X) can be singular at most at
points corresponding to lines passing through a singular point of X and it is well-known, see
for example [AK77, Corollary 1.11], that the lines passing through a singular point of X indeed
form the singular locus of F (X). Our main interest is the Fano scheme of lines on a singular
cubic hypersurface. We therefore make the following general assumption.

1.4 Assumption. We assume that n ≥ 3 and that X = {f = 0} ⊂ Pn is an irreducible cubic
hypersurface in Pn having a unique double point p0 ∈ X.

We will now give a more precise and geometric description of the singular locus of F (X).
Take a linear change of coordinates that maps the point p0 to the point (1 : 0 : · · · : 0). In these
coordinates, as p0 ∈ X is a double point, the defining equation f for X can be written as

f(z0 : · · · : zn) = z0f2(z1 : · · · : zn) + f3(z1 : · · · : zn), (1.4)

where f2 and f3 are of degree two and three, respectively. The projection

π0 : Pn 99K H = {z0 = 0} ∼= Pn−1

from the point p0 maps every point p ∈ Pn that is not the point p0 to the intersection of the
line 〈p, p0〉 with the hyperplane H. We may therefore think of H as parameterising lines in Pn
passing through p0. In fact, there is a natural morphism

Φ : H → Gr(1,Pn), p 7→ 〈p, p0〉 (1.5)

that is an isomorphism onto its image, which is the Schubert variety of lines in Pn passing
through p0. The singular locus of F (X) can therefore be identified with a subscheme Σ ⊂ H
via Φ. It is simple to check that

Σ = {f2 = f3 = 0} ⊂ H.

A detailed description of the structure of Σ is provided by the following lemma.
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

1.5 Lemma ([Wal99, Theorem 2.1 and Theorem 2.2]). If all singularities of X are isolated, Σ
is a complete intersection of type (2, 3) and

BlΣH ∼= Blp0X.

Moreover, the singularities of Σ are in bijection with the singularities of Blp0X and singular
points corresponding to each other under this bijection have the same singularity type.

Proof. A detailed proof can be found in [Hav16, Theorem 2.1.1 and Theorem 2.1.18].

Let Σ2 = {f2 = 0} and Σ3 = {f3 = 0}. C. T. C. Wall also gives a precise description of how
the singular points of Σ = Σ2 ∩ Σ3 arise.

1.6 Lemma ([Wal99, Theorem 2.1]). Every singular point of Σ is a singular point of Σ2 but a
smooth point of Σ3.

A simple observation following from Lemma 1.5 is that the singular locus Σ of F (X) will
itself be singular in general. Moreover, as Σ is a complete intersection, its dimension is
dim(Σ) = n− 3 = 1

2 dim(F (X)) and F (X) cannot be normal, if n ≤ 4.
To complete our brief discussion on generalities on the Fano scheme of lines on a cubic hyper-
surface, we recall how local equations for it can be computed. A more detailed discussion than
ours below can be found in [EH16, Section 6.1.1].
Let l ⊂ X be a line passing through p0. We can assume that l = {z2 = · · · = zn = 0} after a
linear change of coordinates. A local neighbourhood U of l in Gr(1,Pn) with local coordinates
x2, . . . , xn, y2, . . . , yn is then given by all lines passing through the points (1 : 0 : x2 : · · · : xn)
and (0 : 1 : y2 : · · · : yn). Local equations for F (X) are then obtained by taking a common
parametrisation α : U × P1 → Pn of the lines in U and considering the pullback of f under this
parameterisation,

(α∗f)((λ : µ), (x2, . . . , xn, y2, . . . , yn))

= f(λ : µ : λx2 + µy2 : · · · : λxn + µyn)

= F3,0(x2, . . . , xn, y2, . . . , yn)λ3 + F2,1(x2, . . . , xn, y2, . . . , yn)λ2µ

+ F1,2(x2, . . . , xn, y2, . . . , yn)λµ2 + F0,3(x2, . . . , xn, y2, . . . , yn)µ3,

(1.6)

where (λ : µ) denote homogenous coordinates on the P1. Here, the polynomials
F3,0, F2,1, F1,2, F0,3 are obtained by arranging the terms in (1.6) by their respective powers
of λ and µ. A point (x2, . . . , xn, y2, . . . , yn) ∈ U is a point of F (X) if and only if every point of
the respective line lies in X, that is, if (1.6) vanishes regardless of the choice of λ and µ. This
vanishing for all λ, µ is equivalent to

F3,0(x2, . . . , xn, y2, . . . , yn) = F2,1(x2, . . . , xn, y2, . . . , yn)

= F1,2(x2, . . . , xn, y2, . . . , yn) = F0,3(x2, . . . , xn, y2, . . . , yn) = 0,
(1.7)

which therefore are local equations for F (X) in U = U(l) ⊂ Gr(1,Pn). We can also conclude
that the line corresponding to a point (x2, . . . , xn, y2, . . . , yn) ∈ U passes through the point
p0, if x2 = · · · = xn = 0, and consequently, that the image under Φ of the hyperplane H
parameterising the lines through p0 is, in these local coordinates, given by all points in U where
x2 = · · · = xn = 0. This shows that Σ = F (X)∩{x2 = · · · = xn = 0}. Note that Σ is a complete
intersection by Lemma 1.5 and therefore cannot be a component of F (X) of dimension greater
than 2(n − 3). In fact, as the expected dimension of F (X) is 2(n − 3) and the dimension of
Gr(1,Pn) is 2(n−1), the Fano scheme of lines on X is locally a complete intersection in Gr(1,Pn).
A. B. Altman and S. L. Kleiman [AK77] also derived this fact using different methods. It also
follows from their work that F (X) is reduced if X contains no triple point.
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1.2 Recognising singularity types of singular points on hypersurfaces from equations

1.2 Recognising singularity types of singular points on hypersurfaces
from equations

Usually, when one wants to detect the singularity type of an isolated hypersurface singularity
from the defining equation, one computes the corank of the singularity, that is, the corank
of the Hessian of the defining equation at the singular point, and then further invariants of
the singularity such as the Milnor number. Respective algorithms have been implemented for
example in SINGULAR [SIN], a computer algebra system for polynomial computations.
A similar problem that usually is not posed in the literature is: given any polynomial P defining
a hypersurface Y = {P = 0} ⊂ Cn (for some n) with isolated singular point 0 ∈ Cn, what are
the conditions on the defining equation P that are equivalent to (Y, 0) being of a certain type?

In this section we show how to address this problem and how explicit conditions on the
defining equation P of the isolated hypersurface singularity (Y, 0) that imply, and in fact are
equivalent to, that (Y, 0) is of a certain type, can be obtained.
Our approach is based on results of V. Arnol’d [Arn73, Arn74], J. Bruce and C. T. C. Wall
[BW79] together with some known facts from singularity theory. Although none of the results is
new, combining them to obtain an explicit algorithm is an approach that, to our best knowledge,
can be found nowhere in the literature though it might be known to experts.

1.2.1 Recognition Principle

The first result we are going to use is the so-called Recognition Principle. In order to formulate
it, we need a series of definitions.

1.7 Definition (Semiquasihomogenity, [Arn74, Definition 2.1–2.5]). Let d ∈ N and let α =
(α1, . . . , αn) ∈ Qn.

(i) A monomial m(z1, . . . , zn) = zk11 · · · zknn ∈ C[z1, . . . , zn] is said to be of α-degree d, if with
k = (k1, . . . , kn) we have that 〈α, k〉 = d.

(ii) A polynomial P ∈ C[z1, . . . , zn] is called quasihomogenous of degree d with respect to the
weight α, if every monomial in P has α-degree d. In other words, P is quasihomogenous of
degree d with respect to the weight α if and only if P (λα1z1, . . . , λ

αnzn) = λdP (z1, . . . , zn)
holds for every λ ∈ C.

(iii) A polynomial P ∈ C[z1, . . . , zn] is called semiquasihomogenous of degree d with respect to
the weight α if it can be written as P = P0 + P1 such that

(a) P0 is quasihomogenous of degree d with respect to the weight α;

(b) P0 has at most an isolated singularity at the origin;

(c) every monomial in P1 has α-degree strictly greater than d.

1.8 Example. The normal forms of the defining equations of hypersurface singularities of ADE-
type are quasihomogenous of degree one with respect to the weights listed in Table 1.1. We call
these weights the ADE-weights.

1.9 Lemma (Recognition Principle, [BW79, Lemma 1 and Corollary below]). Let P ∈
C[z1, . . . , zn] be a polynomial.

(i) If P is semiquasihomogenous of degree one with respect to an ADE-weight α(T ), then its
quasihomogenous part P0 can be brought into the respective normal form of a singularity
of type T after an analytic change of coordinates.

(ii) If P is as in (i), the hypersurface Y = {P = 0} has an isolated singularity of type T at
the origin.
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

Type T Normal form ADE-weight α(T )

Ak, k ≥ 1 zk+1
1 +

n∑
i=2

z2
i

(
1

k+1 ,
1
2 , . . . ,

1
2

)
Dk, k ≥ 4 zk−1

1 + z1z
2
2 +

n∑
i=3

z2
i

(
1

k−1 ,
k−2

2(k−1) ,
1
2 , . . . ,

1
2

)
E6 z3

1 + z4
2 +

n∑
i=3

z2
i

(
1
3 ,

1
4 ,

1
2 , . . . ,

1
2

)
E7 z3

1 + z1z
3
2 +

n∑
i=3

z2
i

(
1
3 ,

2
9 ,

1
2 , . . . ,

1
2

)
E8 z3

1 + z5
2 +

n∑
i=3

z2
i

(
1
3 ,

1
5 ,

1
2 , . . . ,

1
2

)
Table 1.1: Normal forms of defining equations of hypersurface singularities of ADE-type and

weights for quasihomogenity of degree one with respect to these weights.

1.10 Remark. Semiquasihomogenity is not preserved under coordinate changes, not even un-
der linear ones, cf. [GLS07, page 124]. Therefore, before the Recognition Principle can be
applied, one usually has to change coordinates such that a given polynomial P becomes semi-
quasihomogenous in the new coordinates.

Although we gave the Recognition Principle only for hypersurface singularities of ADE-type,
it can be formulated for arbitrary isolated hypersurface singularities. This follows from the
respective results in [Arn74], respectively from [GLS07, Corollary 2.18], but we will not need
this more general result.

1.11 Example. Let X be the cubic surface given by the vanishing of

f(z0 : z1 : z2 : z3) = z0z1z2 + z1(a3z1z3 + c1z
2
3) + z2(b2z

2
2 + b3z2z3 + c2z

2
3) + c3z

3
3 .

X is singular at the point p0 = (1 : 0 : 0 : 0). Take the affine chart U0 = {z0 6= 0}. It is clear
that the singularity at the origin defined by f = 0 inside U0 cannot be of type A1 as the corank
of the singularity is one. By using the weight α(A2) =

(
1
2 ,

1
2 ,

1
3

)
on f(1, z1, z2, z3), we have

terms of α(A2)-degree = 1 z1z2 + c3z
3
3

terms of α(A2)-degree > 1 z1(a3z1z3 + c1z
2
3) + z2(b2z

2
2 + b3z2z3 + c2z

2
3)

and no terms of α(A2)-degree < 1. By the Recognition Principle, Lemma 1.9, the singularity is
of type A2, if c3 6= 0.

As we mentioned in Remark 1.10, before using the Recognition Principle, one may have to
change coordinates first in order to obtain semiquasihomogenity. One way of finding such coor-
dinates is provided by the Generalised Morse Lemma. We recall its statement and algorithmic
proof for completeness.

1.12 Lemma (Generalised Morse Lemma, [GLS07, I, Theorem 2.47]). If P ∈ m2 ⊂
C{x1, . . . , xN} defines an isolated hypersurface singularity of rank r and multiplicity two at
the origin, then there exists a formal coordinate change ϕ such that

(ϕ∗P )(x1, . . . , xN ) = x2
1 + · · ·+ x2

r +Q(xr+1, . . . , xN ),

with Q ∈ m3.
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1.2 Recognising singularity types of singular points on hypersurfaces from equations

Proof. Since the hypersurface singularity defined by P has rank r, the quadratic part of P can be
transformed to x2

1 + · · ·+x2
r by an analytic coordinate change, cf. the proof of [GLS07, Theorem

2.46]. We may therefore assume that P can be written as

P (x1, . . . , xN ) = x2
1 + · · ·+ x2

r + P3(xr+1, . . . , xN ) +

r∑
i=1

xiQi(x1, . . . , xN )

with P3 ∈ m3 and Qi ∈ m2. Then the coordinate change xi 7→ xi − 1
2Qi for i = 1, . . . , r and

xi 7→ xi for i = r + 1, . . . , N yields

P (x) = x2
1 + · · ·+ x2

r + P3(xr+1, . . . , xN ) + P4(xr+1, . . . , xN ) +
r∑
i=1

xiRi(x1, . . . , xN ),

with P4 ∈ m4 and Ri ∈ m3. By iterating this procedure, the assertion follows.

1.13 Remark. If the quadratic part is given by x1x2 + x2
4 + · · · + x2

r , we can either change
coordinates to turn it into a sum of squares, or use in the proof the coordinate changes x1 7→
x1−Q2 and x2 7→ x2−Q1 for the first two coordinates instead of the ones above. This has the
advantage that we can avoid dealing with complex coordinate changes when performing this
algorithm on a computer.

1.14 Remark. The coordinate changes used in the proof of Lemma 1.12 are not uniquely
determined. In fact, there are already several choices for normalising the quadratic part of the
equation. However, after normalising the quadratic part, we are left with a polynomial of the
form

P (x1, . . . , xN ) = x2
1 + · · ·+ x2

r + P3(xr+1, . . . , xN ) +

r∑
i=1

xiQi(x1, . . . , xN )

and by choosing each Qi with as many terms as possible from P −
∑

j<i xjQj , the coordinate

changes xi 7→ xi− 1
2Qi used in the proof become uniquely determined. We call these coordinate

changes the standard coordinate changes for the Generalised Morse Lemma with respect to the
initial coordinate change used to normalise the quadratic part.

The following combination of the Generalised Morse Lemma and the Recognition Principle
yields a powerful tool for the determination of which singularity types on a hypersurface appear
in dependence on the coefficients of the defining equation.

1.15 Theorem. Let Y ⊂ CN be a hypersurface defined by a polynomial P ∈ C[x1, . . . , xN ]
and assume that the origin is an isolated singular point of Y of corank one. Then, there are
polynomials C1, . . . , Ck+1 in the coefficients of P and depending on the choice of an analytic
coordinate change such that the conditions

C1 = · · · = Ck = 0, Ck+1 6= 0

on the coefficients of P are equivalent to (Y, 0) being of type Ak. Moreover, each Ci is homoge-
nous of degree i−2 and fixing the analytic coordinate change they depend on, there is an explicit
algorithm computing them.

Proof. Let k ∈ N. Using the coordinate changes from the proof of Lemma 1.12, P can be
brought to the form

P (x) = x2
1 + · · ·+ x2

N−1 + P3(xN ) + · · ·+ Pk(xN ) + Pk+1(xN ) +
N−1∑
i=1

xiQi(x1, . . . , xN ) (1.8)
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

with Pi ∈ mi and Qi ∈ mk. By taking the weight α(Ak) =
(

1
2 , . . . ,

1
2 ,

1
k+1

)
, we have

terms of α(Ak)-degree < 1 P3(xN ) + · · ·+ Pk(xN )

terms of α(Ak)-degree = 1 x2
1 + · · ·+ x2

N−1 + Pk+1(xN )

terms of α(Ak)-degree > 1
N−1∑
i=1

xiQi(x1, . . . , xN )

and writing Pi(xN ) = Cix
i
N we can conclude by the Recognition Principle, Lemma 1.9, that P

defines a singularity of type Ak, if C3 = · · · = Ck = 0 and Ck+1 6= 0. The Ci are polynomials in
the coefficients of P and depend on the choice of coordinate changes from the proof of Lemma
1.12 used to bring P to the form (1.8). As these coordinate changes are given in explicit terms,
the form (1.8) and therefore also the Ci can be computed explicitly for each choice of such
coordinates changes. By construction, each Ci is homogenous of degree i− 2.
On the other hand, if X = {P = 0} has a singularity of type Ak at the origin, P is determined
by its (k + 1)-jet by [GLS07, Corollary 2.24]. That is, performing the coordinate changes from
the proof of the Generalised Morse Lemma, Lemma 1.12, we can restrict ourselves to the (k+1)-
jet, that is, ignore the terms xiQi in the expression above. Now if one of P3, . . . , Pk would be
nonzero, the Milnor number

µ(P ) = dimC (C[x1, . . . , xN ]/j(P )) , j(P ) =

〈
∂P

∂x1
, . . . ,

∂P

∂xN

〉
would be less than k contradicting the assumption that the singularity is of type Ak. Likewise,
if Pk+1 = 0, the Milnor number is µ(P ) =∞, yielding a contradiction.

1.16 Definition (Coefficient conditions). For a polynomial P ∈ C[x1, . . . , xN ] and k ∈ N we
call the conditions

C3 = · · · = Ck = 0, Ck+1 6= 0

from Theorem 1.15 obtained by using the standard coordinate changes for the proof of the Gen-
eralised Morse Lemma, cf. Remark 1.14, the coefficient conditions for a singularity of type Ak.
They are dependent on the choice of a coordinate change used to normalise the quadratic part
of P .

Besides the general situation treated here, we will usually be concerned with equations defining
hypersurface singularities whose quadratic part has been normalised already. In such a situation,
the coefficient conditions for a singularity of type Ak depend only on P as we defined them to
be the conditions from Theorem 1.15 obtained with respect to the standard coordinate changes
for the proof of the Generalised Morse Lemma as specified in Remark 1.14, thus fixed a choice
of coordinate changes.

1.2.2 Application to cubic hypersurfaces

We will use Theorem 1.15 to compute the conditions on the coefficients of the defining equation
f for X that are equivalent to X having a singularity of type Ak at the point p0. As we are
taking a similar approach for determining the singularities of F (X) later, we first bring the
defining equation f for X into a specific normal form. This normal form is made in a way that
we not only change the coordinates of the point p0 to (1 : 0 : · · · : 0) but also make a line l
passing through p0 to be given by z2 = · · · = zn = 0. This has the advantage that we can
immediately obtain a local normal form for F (X) around l, i.e. we obtain normal forms for
both X and F (X) at once.

Let thus (p0, l) be a pair consisting of the point p0 ∈ Pn and a line l ⊂ Pn passing through
p0. As we aim to find the conditions for a singularity of type Ak, we assume that the corank
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1.2 Recognising singularity types of singular points on hypersurfaces from equations

of Σ2 = {f2 = 0} ⊂ H ∼= Pn−1 is either zero (for k = 1) or one (for k ≥ 2). After changing
coordinates, we may assume that p0 = (1 : 0 : · · · : 0) and l = {z2 = · · · = zn = 0}. Recall from
(1.4) that f can be written as

f(z0 : · · · : zn) = z0f2(z1 : · · · : zn) + f3(z1 : · · · : zn),

where f2, f3 are homogenous of degree 2, 3, respectively. The condition that l ⊂ X implies that
there are no terms of the form z0z

2
1 or z3

1 in f . We can sort the terms in f2, f3 by their powers
of z1, i.e. write

f2(z1 : · · · : zn) =z1L2(z2 : · · · : zn) +Q2(z2 : · · · : zn),

f3(z1 : · · · : zn) =z2
1L3(z2 : · · · : zn) + z1Q3(z2 : · · · : zn) + C3(z2 : · · · : zn),

with L2, L3 linear, Q2, Q3 quadratic, and C3 cubic polynomials. If (X, p0) is of type A1, the
corank of f2 equals zero and thus L2 6= 0. We may bring f2 to the normal form of a non-
degenerate quadric even by using linear coordinate changes. This is a special case of Lemma
1.12 and it is a well-known result from linear algebra that for a non-degenerate quadric one is
able to do this with linear coordinate changes only, cf. the theory of quadratic forms over C.
Consequently, in appropriate coordinates,

f2(z1 : · · · : zn) = z1z2 + z2
3 + · · ·+ z2

n. (A1)

If the corank of the singularity equals one, there are two cases: In the first case, analogous
to the previous case, we have that L2 6= 0. There are again coordinate changes that bring
f2 to the normal form of the defining equation of a quadric of corank one. That is, after
applying a coordinate change, f2 takes the same form as before but with one z2

i missing, where
i ∈ {3, . . . , n}. We may assume that i = 3 and therefore, that f2 takes the form

f2(z1 : · · · : zn) = z1z2 + z2
4 + · · ·+ z2

n. (Ak≥2, L2 6= 0)

In the second case, L2 = 0. Since f2 does then not depend on z1 and since the corank of f2

has to be one, Q2 defines a non-degenerate quadric and takes the form Q2(z2 : · · · : zn) =
z2z3 + z2

4 + · · ·+ z2
n after a change of coordinates. Thus, in this case,

f2(z1 : · · · : zn) = z2z3 + z2
4 + · · ·+ z2

n. (Ak≥2, L2 = 0)

If the corank of Σ2 is zero, Σ2 is a smooth quadric and also the intersection Σ = Σ2 ∩ Σ3 is
smooth, cf. Lemma 1.6. On the other hand, if the corank of Σ2 is one, Σ2 has a singular point
q0 ∈ Σ2. The intersection Σ = Σ2 ∩ Σ3 is also singular at q0, provided that q0 ∈ Σ. According
to Lemma 1.5 this is the case when k ≥ 3. Therefore, there are in general two types of lines in
the singular locus of F (X): lines corresponding to a smooth point of Σ and lines corresponding
to a singular point of Σ. Via the morphism Φ, see (1.5), if l0 denotes the singular point of the
singular locus of F (X), it is identified with the line l0 = 〈p0, q0〉, i.e. the line passing through
the singular points q0 ∈ Σ and p0 ∈ X.
From the local normal forms for f2 we obtained above, it follows easily that the case
(Ak≥2, L2 = 0) corresponds to l = l0, that is, the case where the line we started with is the line
connecting p0 and q0; and that the case (Ak≥2, L2 6= 0) corresponds to l 6= l0, i.e. to a regular
point of the singular locus Σ of F (X).

One particular consequence of this discussion is that the local structure of F (X) around every
line l ∈ Σ\{l0} is necessarily the same. Or, stated differently, that for any two lines l, l′ ∈ Σ\{l0}
the germs (F (X), l) and (F (X), l′) are isomorphic.

1.17 Theorem ([Eph78, Theorem 0.22]). Let Z be any analytic space, p ∈ Z be a point and
denote by

Isosing(Z, p) = {q ∈ Z | (Z, p) ∼= (Z, q)}
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

the isosingular locus of p. Then, for every q ∈ Isosing(Z, p) there exists a neighbourhood U =
U(q) ⊂ Z of q and an analytic space Y such that

Z ∩ U ∼= Y × (U ∩ Isosing(Z, p)).

1.18 Definition (Transversal singularity). We say that a scheme Z has a transversal singularity
along a locally closed scheme S ⊂ Z if for every point s ∈ S there exists a neighbourhood
U = U(s) ⊂ Z such that Z ∩ U ∼= Y × (U ∩ S), where Y is an analytic space not depending on
s. If Y has a unique singular point y, the transversal singularity type of Z along S is defined
to be the type of (Y, y).

From what we have shown, for every line l ∈ Σreg = Σ \ {l0}, the isosingular locus is
Isosing(F (X), l) = Σreg and by Theorem 1.17 we find a small neighbourhood U = U(l) of l
in F (X) sucht hat F (X)∩U ∼= Y ×(Σreg∩U). We will compute the transversal singularity type
for F (X) along Σreg in the next section and also show that it is the same as those of (X, p0)
in Theorem 1.29. As long as we are interested in computing the transversal singularity type of
F (X) along Σreg only, we may assume that we are in case (Ak≥2, L2 6= 0).
In this case, consider the polynomial f3 and denote the coefficients of the terms z1z2zi by αi for

i ∈ {1, . . . , n}. The change of coordinates z0 7→ z0 −
n∑
i=1

αizi eliminates all of these terms from

f , and f3 then takes the general form

f3(z1 : · · · : zn) = z1

a3z1z3 + z1

n∑
i=4

aizi + z3

n∑
i=4

eizi +
∑

4≤i≤j≤n
Ai,jzizj+c1z

2
3


+ z2

b2z2
2 + z2

n∑
i=3

bizi + z3

n∑
i=4

fizi +
∑

4≤i≤j≤n
Bi,jzizj+c2z

2
3


+ c3z

3
3 + z2

3

n∑
i=4

cizi + z3

∑
4≤i≤j≤n

Ci,jzizj +
∑

4≤i≤j≤k≤n
pi,j,kzizjzk,

(1.9)

with ai, bi, ci, ei, fi, Ai,j , Bi,j ∈ C for all indices i, j appearing in (1.9). We can now apply the
algorithm from Theorem 1.15 to compute the coefficient conditions for a singularity of type Ak.

1.19 Lemma. With the notation as above, (X, p0) is of type A2 if and only if c3 6= 0; and of
type A3 if and only if c3 = 0 and 4c1c2 + c2

4 + . . . c2
n 6= 0.

Proof. The first assertion is a simple consequence of the Recognition Principle as there are no
terms of α(A2)-degree strictly less than one in (1.9). For the second assertion, recall that we
need to find the fourth powers of z3 that occur after applying the algorithm from the proof
of the Generalised Morse Lemma, Lemma 1.12, once. We may cover the ambient Pn with the
standard affine charts {zi 6= 0} for i ∈ {0 . . . , n}. Then the only one out of these affine charts
containing the point p0 is the chart {z0 6= 0}. We therefore perform our calculations in this
chart and write

f(1, z1, . . . , zn) = z1z2 + z2
4 + · · ·+ z2

n + g3(z3) +

n∑
i=1
i 6=3

zigi(z1, . . . , zn).

For i ≥ 4, the coordinate change zi 7→ zi − 1
2gi produces a term 1

4c
2
i z

4
3 from the quadratic part

of the equation and a term 1
2c

2
i z

4
i from the cubic part of the equation. We therefore obtain a

summand 1
4c

2
i z

4
3 for every i ≥ 4. For i = 1, 2, the only fourth power of z4

3 that arises comes from
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1.3 Recognising transversal singularity types of the Fano scheme of lines on a cubic hypersurface

the product (z1 − g2)(z2 − g1) and yields a term c1c2z
4
3 . Summing up, the conditions to have a

singularity of type A3 are

c1c2 +
1

4
(c2

4 + · · ·+ c2
n) 6= 0, c3 = 0,

as we asserted.

1.20 Example (cf. [BW79]). If X ⊂ P3 is a cubic surface with defining equation f in the
above normal form

f(z0 : z1 : z2 : z3) = z0z1z2 + z1

(
a3z1z3 + c1z

2
3

)
+ z2

(
b2z

2
2 + b3z2z3 + c2z

2
3

)
+ c3z

3
3 ,

the method of Theorem 1.15 brings f in the chart z0 6= 0 to the form

z1z2 + c3 · z3
3

−c1c2 · z4
3

+(a3c
2
2 + b3c

2
1) · z5

3

−(4a3b3c1c2 + b2c
3
1) · z6

3

+(4a2
3b3c

2
2 + 6a3b2c

2
1c2 + 4a3b

2
3c

2
1) · z7

3

−(12a2
3b2c1c

2
2 + 16a2

3b
2
3c1c2 + 12a3b2b3c

3
1) · z8

3

...

A necessary condition for the singularity of X at p0 to be isolated is that there exists an index
i 6= 3 such that ci 6= 0. This follows easily by computing the Jacobian of (1.9). Thus, the
coefficients c1 and c2 cannot vanish simultaneously and we can deduce the respective coefficient
conditions listed in Table 1.2. These conditions have also been obtained in [BW79] but with a

Type of (X, p0) Conditions on the coefficients

A2 c3 6= 0

A3 c3 = 0
c1c2 6= 0

A4 c1 = c3 = 0
a3, c2 6= 0

or
c2 = c3 = 0
b3, c1 6= 0

A5 c2 = c3 = b3 = 0
b2, c1 6= 0

Table 1.2: Singularities of cubic surfaces of type Ak for k ≥ 2 and corresponding conditions on
the coefficients of the defining equation.

less systematic approach. If one tries to find the conditions for a singularity of type A6, one
obtains that the coefficient b2 needs to vanish. But this already implies that the coefficient of
zp3 vanishes for all p and provides a different proof of the fact that there exist no cubic surfaces
with an isolated singular point of type Ak with Milnor number k greater than or equal to six.

It is in general hard to compute the coefficient conditions by hand. But since we have an
explicit algorithm, the problem of computing the coefficient conditions can be handed to a
computer.
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

1.3 Recognising transversal singularity types of the Fano scheme of
lines on a cubic hypersurface

In this section we will explain how to find the transversal singularity type of F (X) along
Σreg. We begin by computing local equations for F (X) in a neighbourhood of the fixed line
l = {z2 = · · · = zn = 0} using (Ak≥2, L2 6= 0) and (1.9) which are stating that the defining
equation f for X can be brought to the form

f(z0 : · · · : zn) = z0(z1z2 + z2
4 + · · ·+ z2

n)

+ z1

a3z1z3 + z1

n∑
i=4

aizi + z3

n∑
i=4

eizi +
∑

4≤i≤j≤n
Ai,jzizj


+ z2

b2z2
2 + b3z2z3 + z2

n∑
i=4

bizi + z3

n∑
i=4

fizi +
∑

4≤i≤j≤n
Bi,jzizj


+ c3z

3
3 + z2

3

n∑
i=4

cizi + z3

∑
4≤i≤j≤n

Ci,jzizj +
∑

4≤i≤j≤k≤n
pi,j,kzizjzk.

(1.10)

If α : U × P1 → Pn is a common parameterisation of the lines in U and x2, . . . , xn, y2, . . . , yn
denote local coordinates on U ,

(α∗f)(λ : µ) = λ(µ(λx2 + µy2) + (λx4 + µy4)2 + · · ·+ (λxn + µyn)2)

+ µ

(
a3µ(λx3 + µy3) + µ

n∑
i=4

ai(λxi + µyi) + (λx3 + µy3)
n∑
i=4

ei(λxi + µyi)

+
∑

4≤i≤j≤n
Ai,j(λxi + µyi)(λxj + µyj)



+ (λx2 + µy2)

b2(λx2 + µy2)2 + b3(λx2 + µy2)(λx3 + µy3)

+(λx2 + µy2)
n∑
i=4

bi(λxi + µyi)

+(λx3 + µy3)
n∑
i=4

fi(λxi + µyi)

+
∑

4≤i≤j≤n
Bi,j(λxi + µyi)(λxj + µyj)



+ c3(λx3 + µy3)3 + (λx3 + µy3)2
n∑
i=4

ci(λxi + µyi)

+ (λx3 + µy3)
∑

4≤i≤j≤n
Ci,j(λxi + µyi)(λxj + µyj)

+
∑

4≤i≤j≤k≤n
pi,j,k(λxi + µyi)(λxj + µyj)(λxk + µyk)
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1.3 Recognising transversal singularity types of the Fano scheme of lines on a cubic hypersurface

= F3,0(x2, . . . , xn, y2, . . . , yn)λ3 + F2,1(x2, . . . , xn, y2, . . . , yn)λ2µ

+ F1,2(x2, . . . , xn, y2, . . . , yn)λµ2 + F0,3(x2, . . . , xn, y2, . . . , yn)µ3,

with

F3,0(x2, . . . , xn, y2, . . . , yn) =x2
4 + · · ·+ x2

n + h1, h1 ∈ m3,

F2,1(x2, . . . , xn, y2, . . . , yn) =x2 + h2, h2 ∈ m2,

F1,2(x2, . . . , xn, y2, . . . , yn) =y2 + h3, h3 ∈ m2,

F0,3(x2, . . . , xn, y2, . . . , yn) =a3y3 + · · ·+ anyn + h4, h4 ∈ m2.

(1.11)

By analysing the equations above, h1 depends on the coordinates x2, . . . , xn only, h4 on the
coordinates y2, . . . , yn, and h2(0, . . . , 0, y2, . . . , yn) = 0. As we know that the singular locus of
F (X) ∩ U is F (X) ∩ U ∩ Φ(H) = F (X) ∩ U ∩ {x2 = · · · = xn = 0}, where Φ is the morphism
defined in (1.5), it follows that

Σ ∩ U ∼= {(y2, . . . , yn) | F1,2(0, . . . , 0, y2, . . . yn) = F0,3(0, . . . , 0, y2, . . . yn) = 0}.

We now deduce how to compute coefficient conditions for the transversal singularity type of
F (X) along Σreg.

1.21 Definition (cf. [FG02, page 109]). Denote by C{x1, . . . , xN} the ring of convergent power
series in N variables. Then, P ∈ C{x1, . . . , xN} is called x1-regular of order a if there exists
P̃0 ∈ C{x1} such that P (x1, 0 . . . , 0) = xa1P̃0(x1) and P̃0(0) 6= 0.

If P ∈ C{x1, . . . , xN}, we denote by jetp(P ) the p-jet of P , that is, the sum of all terms of P
of degree at most p.

1.22 Lemma. Let P ∈ C{x1, . . . , xN}, P 6= 0, x1-regular of order 1. Then, for any natural
number p ≥ 1, there is an analytic coordinate change ϕ, such that jetp(ϕ∗P ) = x1.

Proof. We may assume that the coefficient of x1 is normalised to one and thus write

P (x1, . . . , xn) = x1 + x1Q1(x2, . . . , xN ) + x2
1Q2(x2, . . . , xN ) + . . . .

The case p = 1 is trivial. Denote by On(f) the polynomial consisting of all monomials of order n
in P . For p ≥ 1, the change of coordinates x1 7→ x1−O2(P ) eliminates all quadratic terms in P
and produces additional terms of order at least three. Applying analogous coordinate changes
successively yields the desired k-jet.

Since this is possible for every p, we obtain that ϕ∗f = x1 in the limit, i.e. after applying
these coordinate changes successively. This possibly infinite succession of analytic coordinate
changes results in a formal coordinate change and we thus have the following corollary.

1.23 Corollary. Let f ∈ C{x1, . . . , xN}, f 6= 0, x1-regular of order 1. Then there exists a
formal coordinate change ϕ such that ϕ∗f = x1.

If in equation (1.11) there is some ai 6= 0, F0,3 is y3-regular of order 1 after possibly renaming
the coordinates and there exists a formal coordinate change ϕ1 such that ϕ∗1F0,3 = y3. If
a3 = · · · = an = 0, the polynomial F0,3 has no linear term. Let ϕ1 denote a formal coordinate
change as in Corollary 1.23 and such that ϕ∗1F1,2 = y2. It is then simple to check from the local
equations that

ϕ∗1F0,3 = y2
3

n∑
i=3

ciyi + y3

n∑
i=4

eiyi + y2 · P (y2, . . . , yn)
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

for some polynomial P . Using ϕ∗F1,2 = y2 = 0 on this equation gives

ϕ∗1F0,3 = y2
3

n∑
i=3

ciyi + y3

n∑
i=4

eiyi.

Thus, either y3 = 0, or y3(c3y3 + · · · + cnyn) + e4y4 + · · · + enyn = 0. If some ei 6= 0, we
can assume after possibly renaming the coordinates, that ϕ∗1F0,3 is y3-regular of order 1 and
apply Corollary 1.23 to find a formal coordinate change ϕ2 such that (ϕ2 ◦ ϕ1)∗F0,3 = y3. If
e4 = · · · = en = 0, ϕ∗1F0,3 = y2

3(c3y3 + · · ·+cnyn), and thus either y3 = 0 or c3y3 + · · ·+cnyn = 0.
We discussed already that for the singularity (X, p0) to be isolated there needs to be some ci 6= 0.
Consequently, the polynomial c3y3 + · · ·+ cnyn is y3-regular of order 1 after possibly renaming
the coordinates and there is a formal coordinate change ϕ2 such that (ϕ2 ◦ ϕ1)∗F0,3 = y3. By
applying Corollary 1.23 to the other equations in (1.11) also, we can conclude that there is a
formal coordinate change ϕ such that the local equations (1.11) for F (X) in this new coordinates
take the form

ϕ∗F3,0(x2, . . . , xn, y2, . . . , yn) =x2
4 + · · ·+ x2

n + h

ϕ∗F2,1(x2, . . . , xn, y2, . . . , yn) =x2,

ϕ∗F1,2(x2, . . . , xn, y2, . . . , yn) =y2,

ϕ∗F0,3(x2, . . . , xn, y2, . . . , yn) =y3,

(1.12)

with a formal power series h. Note that each of the coordinate changes from the proof of Lemma
1.22 that we apply to bring the defining equations to the form (1.12) only affects the coordinates
x2, y2 and y3. Thus the same is true for the formal coordinate change ϕ and the image of Σ
under these coordinate changes is {(x2, . . . , xn, y2, . . . , yn) | y2 = y3 = x2 = · · · = xn = 0}.
If we now take any fixed point (0, 0, y4, . . . , yn) ∈ Σ ∩ U , we can read off equations for the
transversal singularity along Σreg from (1.12) which are

x2 = x2
4 + · · ·+ x2

n + h = 0,

that is, we obtain a hypersurface singularity of corank one inside Cn−2 (with coordinates
x3, . . . , xn). We can then apply the coordinate changes from the proof of the Generalised Morse
Lemma, Lemma 1.12, to deduce that f = x2

4 + · · · + x2
n + h after a formal coordinate change

takes the form

f = x2
4 + · · ·+ x2

n + C3x
3
3 + C4x

4
3 + . . . , (1.13)

with the Ci depending on the coefficients of f . If now C3 = · · · = Ck = 0 but Ck+1 6= 0, there
exists, by Corollary 1.23, another formal coordinate change such that f becomes x2

4 + · · ·+x2
n +

Ck+1x
k+1
3 . In other words f then is formally equivalent to the defining equation of a singularity

of type Ak.

1.24 Theorem ([Art68, Corollary 1.6]). Let Y1, Y2 be analytic spaces and y1 ∈ Y1, y2 ∈ Y2 be
points. Then, Y1 and Y2 are formally isomorphic at y1 and y2 respectively, i.e. ÔY1,y1 ∼= ÔY2,y2
(where ·̂ denotes formal completion) if and only if (Y1, y2) ∼= (Y2, y2).

Therefore, we can also compute coefficient conditions for the hypersurface singularity of F (X)
along Σreg. It could of course happen that Ci = 0 for all i ≥ 3. In this case, the analytic space
Y from Theorem 1.17 would have a non-isolated singularity at every point of Σreg. If there is
at least one i such that Ci 6= 0, the argument above implies that the transversal type is of type
Ak for some k.

The actual computation of the coefficient conditions again turns out to be very time consum-
ing. We would therefore like to also give this computations to a computer. One obstruction
to do so is the need for formal coordinate changes. If we are only interested in finding the
coefficient conditions for a singularity of type Ak for, or up to, some fixed k, it suffices to work
with a sufficiently high jet of the defining equations.
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1.3 Recognising transversal singularity types of the Fano scheme of lines on a cubic hypersurface

1.25 Lemma. For computing the coefficient conditions C3, . . . , Ck+1 from (1.13) for fixed k, it
is sufficient to consider the formal coordinate changes used to transform the last three equations
in (1.11) up to order dk+1

3 e.

Proof. We need to compute f up to order k + 1. Since in (1.11) the function h1 lies in m3, for
obtaining the entire (k + 1)-jet of h it is sufficient to work with the dk+1

3 e-jet of the last three
equations. The coordinate changes performed to bring h to the desired form C3x

3
3 +C4x

4
4 + . . .

are those from the proof of the Generalised Morse Lemma, Lemma 1.12, and only increase but
never decrease the degree of terms in f.

1.26 Example. Let us compute the coefficient conditions for a transversal singularity of type
A2. We have dk+1

3 e = 1, since k = 2, that is, it suffices to work with the one-jet of the last three
equations in (1.7). By working out the local equations, we obtain

F3,0(x2, . . . , xn, y2, . . . , yn) = x2
4 + · · ·+ x2

n + x2
2

n∑
i=2

bixi + x2

∑
4≤i≤j≤n

Bi,jxixj + c3x
3
3

+ x2
3

n∑
i=4

cixi + x3

∑
4≤i≤j≤n

Ci,jxixj +
∑

4≤i≤j≤k≤n
pi,j,kxixjxk,

jet1F2,1(x2, . . . , xn, y2, . . . , yn) = x2,

jet1F1,2(x2, . . . , xn, y2, . . . , yn) = y2,

jet1F0,3(x2, . . . , xn, y2, . . . , yn) = a3y3 + · · ·+ anyn.

We can compute the transversal singularity type at every point of Σreg, in particular at the
point y2 = · · · = yn = 0. This eliminates the last two equations. We can moreover eliminate the
variable x2 using the second equation. The remaining equation then determines the transversal
singularity type and is

F3,0(0, x3, . . . , xn, 0, . . . , 0) = x2
4 + · · ·+ x2

n + c3x
3
3 + x2

3

n∑
i=4

cixi + x3

∑
4≤i≤j≤n

Ci,jxixj

+
∑

4≤i≤j≤k≤n
pi,j,kxixjxk.

We can now either conclude using the Recognition Principle, Lemma 1.9, that the coefficient
condition for a singularity of type A2 is c3 6= 0, or use the coordinate changes from Lemma 1.22
to bring this equation to the form x2

4 + · · ·+ x2
n + c3x

3
3, since the equation is x3-regular of order

three. Comparing with Lemma 1.19, we see that F (X) has a transversal singularity of type A2

along Σreg, if and only if (X, p0) is of type A2.

For the remainder of this section only, let fn be given by equation (1.10), that is, let fn be the
defining equation in the normal form from section 1.2.2 of a cubic hypersurface in Pn containing
a double point. Then, fn admits the following useful symmetry property:

(SP) Let I = (i0, . . . , in) ∈ Nn+1
0 . If there exists in fn a term of the form C · zi00 z

i1
1 · · · zinn , there

also exist in fn all terms of the form Cσ ·zi00 · · · z
i3
3 z

i4
σ(4) · · · z

in
σ(n), where σ is any permutation

of {4, . . . , n}. Here, both C and Cσ denote (non-zero multiples of) coefficients of fn.

This property is immediately clear from the equation (1.10). All functions we derived from
fn, namely the coefficient conditions Cn,k = Ck(fn) and the local equations (1.7) for the Fano
scheme, inherit the symmetry property (SP). Note that for the coefficient conditions Ci the
coefficients C and Cσ are the same for all permutations σ of {4, . . . , n}. The following example
illustrates the usefulness of (SP) for computing the coefficient conditions Cn,k.
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1 Singularities of the Fano scheme of lines on a cubic hypersurface

1.27 Example. We have shown in Lemma 1.19 that the coefficient condition Cn,4 is

Cn,4 = 4c1c2 + c2
4 + · · ·+ c2

n.

We claim that using the symmetry property (SP), Cn,4 can be determined from C5,4 already.
Recall that Cn,k is known to be homogenous of degree k− 2 by Theorem 1.15. Therefore, every
monomial in Cn,4 can be a product of at most two mutually distinct variables. As we have
the symmetry property (SP), every such product appears for n = 5 already. Conversely, every
product of at most two mutually distinct variables in Cn,4 is determined by such a product in
C5,4 using the symmetry property (SP). That is, since we find the term c2

4 in C5,4, the terms c2
i

have to appear in Cn,4 for every i ≥ 4; and Cn,4 can not contain any product of two distinct
variables with index at least four, as if it would e.g. contain a term of the form cicj for i, j ≥ 4,
i 6= j, the symmetry property (SP) implies that C5,4 has to contain the term c4c5 which it does
not.
Note that we needed n to be at least 5 = 3 + 2 since only coordinates with index at least four
are permuted in the definition of (SP).

The argument from Example 1.27 is not limited to the coefficient condition Cn,4 but easily
generalises to the following corollary.

1.28 Corollary. If fn is given by equation (1.10) and Cn,k = Ck(fn) denotes the corresponding
coefficient condition, then Cn,k can be determined from Ck+1,k using the symmetry property
(SP).

Proof. Just as in Example 1.27, one has to compute Cn,k for the smallest n such that a product
of k−2 mutually distinct coordinates with index at least four can appear and can then conclude
using the symmetry property (SP). The respective smallest n is given by n = 3+k−2 = k+1.

1.29 Theorem. For k ≤ 5, the singularity type of (X, p0) is Ak if and only if the transversal
singularity type of F (X) along Σreg is Ak.

Proof. We can compute the coefficient conditions for X and F (X) to have a singularity of type
Ak separately and compare them just as we did with Lemma 1.19 and Example 1.26. This is
done by first bringing the defining equation f for X to the normal form (1.8). From this, the
coefficient conditions for the cubic hypersurface X can be computed using the algorithm from
the proof of Lemma 1.12. To compute the coefficient conditions for the Fano scheme of lines
on X, we need to pass to local equations F (X) first and bring them to the form (1.12) using
the formal coordinate changes introduced above, cf. Lemma 1.22. This reduces us to another
computation of the coefficient conditions of a hypersurface which can again be done by applying
the algorithm from the proof of Lemma 1.12.

In order to prove the present theorem for fixed k, we handed the problem to a computer.
This can be done, since Lemma 1.25 allows us to use algebraic coordinate changes instead of
polynomial ones and since Corollary 1.28 reduces the computations for fixed k to computing
finitely many equations.

We implemented the computation of local equations for F (X), the algorithm from the proof
of Lemma 1.12 and the computation of the normal form (1.12) in the computer algebra system
SINGULAR [SIN] and also in Python [Pyt] and used this implementation to prove the theorem.
The source code for the implementation in Python is provided in the appendix of this thesis
together with some brief explanations on the code.

1.30 Remark. The limitation to k ≤ 5 in Theorem 1.29 is only due to lack of computational
power.
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1.4 Remarks on the implementation

1.31 Remark. The case of (X, p0) of type A1 follows immediately from our local computations
which in particular show that the corank of (X, p0) is the same as the corank of the transversal
singularity of F (X). Now the singularity of type A1 is the unique singularity of corank zero, as
is clear from the Generalised Morse Lemma, Lemma 1.12. This special case was proven before
by H. Clemens and P. Griffiths [CG73, Theorem 7.8].

Instead of proving Theorem 1.29 in all dimensions for a fixed k, we can also check it for all k
in a fixed dimension. It turns out that at least the case of of cubic surfaces and cubic threefolds
can entirely be dealt with using this method.

1.32 Theorem. If X ⊂ Pn is a cubic hypersurface and n ≤ 4, Theorem 1.29 holds without any
assumption on k.

Proof. For fixed dimension n ≥ 3, there is a maximal k such that there can be a cubic hyper-
surface X ⊂ Pn with isolated singular point of type Ak. For n = 3 this maximal k is known
to be k = 5 by [BW79]; for n = 4 we show that the maximal k is k = 11, see Corollary 3.35.
Consequently, to proof the assertion there are only finitely many cases to be checked and this
can be done as in the proof of Theorem 1.29.

1.4 Remarks on the implementation

In this section we briefly explain some further simplifications of the defining equations we have
made to decrease the computation time. Consider the normal form (1.10) for the defining
equation f for X. One step in computing the coefficient conditions on f to define a singularity
of type Ak is to perform the Generalised Morse Lemma. In order to do so, let

g1(z1, . . . , zn) = a3z1z3 + z1

n∑
i=4

aizi + z3

n∑
i=4

eizi +
∑

4≤i≤j≤n
Ai,jzizj ,

g2(z1, . . . , zn) = b2z
2
2 + b3z2z3 + z2

n∑
i=4

bizi + z3

n∑
i=4

fizi +
∑

4≤i≤j≤n
Bi,jzizj ,

g4(z1, . . . , zn) = c4z
2
3 + z3

n∑
i=4

C4,izi +
∑

4≤i≤j≤n
p4,i,jzizj ,

...

gn(z1, . . . , zn) = cnz
2
3 + Cn,nz3zn + pn,n,nz

2
n,

f3(z3) = c3z
3
3 ,

and

f(1, z1, . . . , zn) = z1z2 + z2
4 + · · ·+ z2

n+f3(z3) +

n∑
i=1
i 6=3

zigi(z1, . . . , zn).

1.33 Lemma. The following terms have α(Ak)-degree strictly greater than one and retain this
property under the coordinate changes used in the proof of Lemma 1.12:

• pi,j,kzizjzk for i, j, k ≥ 4;

• Ai,jz1zizj for i, j ≥ 4;

• Bi,jz2zizj for i, j ≥ 4.

These terms therefore do not contribute to the conditions for a singularity of type Ak.

27



1 Singularities of the Fano scheme of lines on a cubic hypersurface

Proof. Recall that the weight 1
k+1 is put on the variable z3 and that the coordinate changes

performed in the proof of Lemma 1.12 are

z1 7→ z1 − g2, z2 7→ z2 − g1, zi 7→ zi −
1

2
gi, i = 4, . . . , n.

It is clear that all of the terms in question have α(Ak)-degree strictly greater than one and the
only thing to prove is that this property is retained under these coordinate changes.
Terms of the form pi,j,kzizjzk for i, j, k ≥ 4 give rise to terms in g4, . . . , gn. Consider a coordinate
change zi 7→ zi − 1

2gi. The defining equation in this new coordinates contains(
zi −

1

2
pi,j,kzjzk

)2

+

(
zi −

1

2
pi,j,kzjzk

)
gi

(
z1, . . . , zi −

1

2
pi,j,kzjzk, . . . , zn

)
.

In this, the term z2
i remains anyway, the term −zipi,j,kzjzk cancels out by construction and the

term 1
4p

2
i,j,kz

2
j z

2
k clearly has α(Ak)-degree two thus strictly greater than one. The remaining

terms either have factor −1
2pi,j,kzjzk which already has α(Ak)-degree one, thus multiplying it

with anything that is not a constant increases the α(Ak)-degree; or are terms coming from

zigi

(
z1, . . . , zi −

1

2
pi,j,kzjzk, . . . , zn

)
= zigi(z1, . . . , zn) +R(z1, . . . , zn).

The first term is the one that cancels out with the term mentioned earlier. In R(z1, . . . , zn)
every term again has a factor

(
−1

2pi,j,kzjzk
)p

for some p, thus α(Ak)-degree strictly greater than
one as we have argued already.
The argument for the other terms Ai,jz1zizj and Bi,jz2zizj is analogous.

Using Lemma 1.33 we can disregard some of the terms in the gi. This results in the following
simplification for g1, . . . , gn:

g1(z1, . . . , zn) = a3z1z3 + z1

n∑
i=4

aizi + z3

n∑
i=4

eizi,

g2(z1, . . . , zn) = b2z
2
2 + b3z2z3 + z2

n∑
i=4

bizi + z3

n∑
i=4

fizi,

g4(z1, . . . , zn) = c4z
2
3 + z3

n∑
i=4

C4,izi,

...

gn(z1, . . . , zn) = cnz
2
3 + Cn,nz3zn,

f3(z3) = c3z
3
3 .

There also is a major simplification possible when dealing with the local equations (1.11) for
F (X). The formal coordinate changes we use to linearise the last three equations in (1.11) only
affect the coordinates x2, y2, y3. The coordinates y4, . . . , yn are therefore invariant under this
formal coordinate change. As we can compute the transversal singularity type at any point of
Σreg, in particular at the point where the local coordinates for Σreg all vanish, we can assume
that y2 = · · · = yn = 0 just as we did in Example 1.26. But since y4, . . . , yn remain unchanged
under the formal coordinate change, we can assume y4 = · · · = yn = 0 from the start, i.e. before
performing any coordinate change.
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2 Tail reduction for transverse curve
singularities

The probably most famous appearance of the Fano scheme of lines in the literature is in a paper
by H. Clemens and P. Griffiths [CG73] from 1973 where it is shown that, for a smooth cubic
threefold X, the intermediate Jacobian of X is isomorphic to the Albanese variety of F (X).
This result was generalised in 2010 by G. van der Geer and A. Kouvidakis [vK10] where they
prove the same result for cubic threefolds with a unique singular point of type A1 but replace
the Albanese variety of F (X) by its Picard scheme. A general framework for computing the
intermediate Jacobian of a singular cubic threefold was then given in 2015 by S. Casalaina-
Martin, S. Grushevsky, K. Hulek and R. Laza in [CGHL15] and many cases are worked out
using their methods by K. Havasi in his 2016 thesis [Hav16].

The aim of the remainder of this thesis is to study the degenerate Picard scheme of F (X)
when X is a singular cubic threefold with a unique singular point of type Ak. Our approach is
different from that given in [vK10] and based on the Semistable Reduction Theorem for curves.
We therefore recall this theorem along with a proof due to J. Harris and I. Morrison [HM98]
that gives us the opportunity to perform explicit calculations. Afterwards, we show how the
Semistable Reduction Theorem can be used to compute the degenerate Picard scheme of a
singular curve.
In order to apply these results to the Fano scheme of lines on a singular cubic threefold, we prove
a generalisation of the methods in [HM98] to varieties admitting transverse curve singularities
along a smooth singular locus of which the Fano scheme of lines on a cubic threefold with a
unique singular point of type A1 or A2 is a particular example. We call this operation tail
reduction as it is not clear in which, if any, sense the result is semistable. Finally, applying
the tail reduction to F (X) for X with a unique singular point of type A1 or A2 enables us to
compute its degenerate Picard scheme.

2.1 Semistable reduction for curves

Throughout the remainder of this thesis, B always denotes a smooth curve, 0 ∈ B a point and
B∗ = B \ {0} the complement of the point 0 ∈ B.

2.1 Definition (Smoothing). Let π : Y→ B be a flat family of varieties. Then, π : Y→ B is
called smoothing of Y0, if for all b ∈ B∗ the fibre Yb = π−1(b) is smooth.

Let π : C→ B be a smoothing of the curve C0 such that for all b ∈ B∗ we have that g(Cb) ≥ 2,
and assume that C0 has a unique singular point of ADE-type, cf. Table 1.1. By a (semi-)stable
reduction of π : C→ B we mean the following Theorems 2.2 and 2.3.

2.2 Theorem (Stable Reduction Theorem for curves, cf. [HM98, Proposition 3.47]). There
exists a branched cover ϕ : B′ → B, totally ramified over 0 ∈ B, and a flat family π′ : C′ → B′
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2 Tail reduction for transverse curve singularities

of curves such that C′b
∼= Cϕ(b) for all b 6= 0 and the central fibre C′0 of the family π′ : C′ → B′ is

stable in the sense of Deligne-Mumford, [DM69, Definition 1.1], that is, C′0 is reduced, connected,
its only singularities are ordinary double points and every non-singular rational component of
C′0 meets other components of C′0 in at least three points. Moreover, the central fibre C′0 of
π′ : C′ → B is uniquely determined by the family π : C→ B.

The family π : C′ → B′ in Theorem 2.2 is called a stable reduction of the initial family
π : C → B. In general, the total space C′ of the stable reduction π′ : C′ → B′ cannot assumed
to be smooth but it is possible to obtain a similar statement with smooth total space, by
weakening the assumptions on the central fibre C′0. To be more precise, if a smooth total space
C′ is needed, the central fibre C′0 can in general only assumed to be semistable in the sense of
Deligne-Mumford.

2.3 Theorem (Semistable Reduction Theorem for curves, cf. [HM98, Proposition 3.48]). There
exists a branched cover ϕ : B′ → B, totally ramified over 0 ∈ B, and a flat family π′ : C′ → B′

of curves such that C′b
∼= Cϕ(b) for all b ∈ B∗ and the central fibre C′0 of the family π′ : C′ →

B′ is semistable in the sense of Deligne-Mumford, that is, C′0 is reduced, connected, its only
singularities are ordinary double points and every non-singular rational component of C′ meets
other components of C′ in at least two points. Moreover, the total space C′ is smooth and the
central fibre C′0 of π′ : C′ → B is determined by the family π : C → B up to contractions of
smooth rational components of C′ that meet the rest of C′ in fewer than three points.

It is a general result, see [KKMS73, page 53], that for every flat family π : Y→ B of varieties
such that Yb is smooth for b ∈ B∗, there exists a finite base change ϕ : B′ → B and a family
π′ : Y′ → B′ with smooth total space Y′ such that Y′b

∼= Yϕ(b) for all b ∈ B∗ and with Y′0
defining a simple normal crossing divisor in Y′, cf. Definition 2.4 below. This is what usually
is called a semistable reduction of the family π : Y→ B and Theorem 2.2 appears as a special
case of this. The proof given for families of curves in [KKMS73, pages 98-108] is in most parts
constructive, but fails to give a precise description of the central fibre Y′0 of a stable reduction
π′ : Y′ → B′. The first entirely constructive proof is due to J. Harris and I. Morrison [HM98].
As we aim to generalise their method of proof to transversal curve singularities along a smooth
singular locus on the central fibre, we give here complete proofs of Theorem 2.3 and Theorem
2.2 following the sketch in [HM98].

2.4 Definition (cf. [Kol07, Definition 1.44]). Let Y be a smooth variety and D ⊂ Y be a
divisor.

(i) We call D a simple normal crossing divisor, if every irreducible component of D is smooth
and if all intersections of irreducible components of D are transverse. In other words, D is
a simple normal crossing divisor, if all of its components are smooth and if for every p ∈ D
there exists an analytic neighbourhood U = U(p) of p with local coordinates x1, . . . , xN such
that D∩U = {xa11 · · · · ·xarr = 0} for some r ∈ {1, . . . , N} and natural numbers a1, . . . , ar.

(ii) We call D a reduced simple normal crossing divisor, if D is a simple normal crossing
divisor and all of its irreducible components are reduced. In other words, D is a reduced
simple normal crossing divisor, if all of its components are smooth and if for every p ∈ D
there exists an analytic neighbourhood U = U(p) of p with local coordinates x1, . . . , xN
such that D ∩ U = {x1 · · · · · xr = 0} for some r ∈ {1, . . . , N}.

Proof of Theorems 2.2 and 2.3, cf. the sketch given in [HM98, pages 137-138].
Let π : C → B be a flat family of curves such that all fibres over points of B∗ are smooth and
of genus at least two.
The proof is organised as follows: We start by passing from the initial family π : C → B to
a family π̃ : C̃ → B with smooth total space that differs from the original family only in the
central fibre and such that C̃0, seen as a divisor in C̃, is a simple normal crossing divisor.

32



2.1 Semistable reduction for curves

Since C̃0 will in general admit nonreduced components, we perform a finite base change followed
by normalisation to obtain a family such that the central fibre defines a reduced simple normal
crossing divisor. In order to understand, how the components of the central fibre change during
this procedure, we decompose this operation into several intermediate steps. The description of
these intermediate steps and the analysis of their effect to the several components of C̃0 makes
up the second step of the proof.
If we were only interested in proving the assertion, this step could be dealt with in a few lines.
The advantage of the lengthy approach presented here is the complete analysis of the effect of
these operations on the central fibre, making it possible to in the end compute the central fibre
of a stable reduction explicitly.
The third and fourth step then establish Theorems 2.2 and 2.3 by first resolving the singularities
of the total space, yielding Theorem 2.3, and then blowing down all components of the central
fibre that intersect the rest of the central fibre in fewer than three points to obtain Theorem
2.2.

Step 1 (Replacing the central fibre by one that has normal crossing singularities).

We begin with a strong embedded resolution of the singularities of C0 inside C, that is, with a
resolution of singularities of C0 by successive blowups of C until the total transform of C0 defines
a simple normal crossing divisor in the blown up ambient space C. This is always possible, see
e.g. [Kol07, Theorem 1.47] for a proof, and can be done by successive blow ups of C at the
singular points of C0 and its respective strict transforms. The total transform of C0 under these
blowups then consists of the strict transform of C0, which is the normalisation of C0, together
with the exceptional divisors from the various blowups. We give a precise description of the
configurations of exceptional divisors that can arise from embedded resolutions of curves with
ADE-singularities and the multiplicities of the various components of the total transform in
section 2.2. If we denote the blown up total space by C̃, we obtained a family π̃ : C̃ → B
that differs from the original family C→ B only in the central fibre and such that C̃ is smooth
with C̃0 defining a simple normal crossing divisor in C̃. Flatness of this family follows from
[Har83, Proposition 9.7, page 257], since C̃ is reduced, connected and dominates B.

To simplify our notation, we will from now on assume that our initial family π : C → B
already had smooth total space C and that C0 defines a simple normal crossing divisor in C.

Step 2 (From simple normal crossing to reduced simple normal crossing).

Write C0 = D =
∑
ajDj , seen as a divisor on C. Let l be the least common multiple of the

multiplicities of the components of C0, i.e. l = lcm(aj | j). If l = 1, C0 defines a reduced simple
normal crossing divisor already and we can proceed with step four. We may therefore assume
that l ≥ 2. Consider the finite base change ϕ : B′ → B given by u 7→ ul = t and let ψ : C̃→ ϕ∗C
be the normalisation of ϕ∗C = C ×B B′. We claim that the central fibre C̃0 is reduced with
smooth components intersecting transversally. This can be checked using local coordinates, see
for example [ACG11, Chapter X, section 4]. By doing so it is, however, hard to keep track of
what happens to the central fibre C0 under the finite base change and normalisation. We will
therefore decompose these operations into several intermediate steps for which it is easier to
understand their effect on the various components of the central fibre.

Consider the prime factorisation l = p1·· · ··pr with the pi not necessarily mutually distinct. We
decompose the base change of order l into the composition of the base changes ϕi : u 7→ upi = t
and will, instead of normalising the pullback by ϕ take a partial normalisation of the pullback
of the family by ϕi in each step.
We begin with C̃0 = C and B0 = B and perform the following procedure successively for
i = 1, . . . , r. Write Di−1 =

∑
ai−1
j Di−1

j and let

ϕi : Bi → Bi−1, u 7→ upi = t

be the finite base change of order pi. Taking the fibre product Ci = C̃i−1 ×Bi−1 Bi = ϕ∗C̃i−1 is

the same as taking the branched covering of C̃i−1 of order pi that is branched along the divisor
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2 Tail reduction for transverse curve singularities

Di−1 = {t = 0}. Since C̃i−1
0 has normal crossing singularities only, C̃i−1 is locally around points

of C̃i−1
0 given by t = xayb where a, b are from the ai−1

j ’s, or by t = xa where a is from the ai−1
j ’s.

Here, x, y are local coordinates on C̃i−1 and t on Bi−1. The local equation of the resulting
surface Ci then is upi = xayb, where u is a local coordinate on Bi. The relation between the
central fibre of Ci → Bi and C̃i−1 → Bi−1 is explained by

ϕ∗iD
i−1 = {upi = 0} = pi · {u = 0}, (2.1)

where {u = 0} is the divisor corresponding to the central fibre Ci0 ⊂ Ci. As a divisor on Ci,
the central fibre Ci0 therefore equals 1

pi
· ϕ∗iDi−1. We can also see this in local coordinates: if

m · Di−1
j = {zm = 0} is a component of D, where z is one of the local coordinates on C̃i−1,

its variation with t is given by {zm = t} and the inverse image of this is {zm = upi}, giving a
local equation for Ci. In particular, Ci is singular along the inverse image ϕ∗i (mD

i−1
j ), if m > 1.

Consider the map ψi that is in local coordinates defined by

ψi : v 7→ vz

⌊
m
pi

⌋
= u.

Then, ψ∗i ({zm = upi}) = {vpi = zm mod pi} is a local equation for C̃i = ψ∗i (C
i). In other words,

taking the fibre product Ci = C̃i−1 ×Bi−1 Bi followed by replacing the coordinate u by the

coordinate v introduced above, is the same as taking the branched cover of C̃i−1 of order pi that
is branched along the divisor Di−1

mod pi
=
∑

(aj mod pi)D
i−1
j which we call the divisor Di−1

reduced modulo pi.
1 In particular, the map ψi is defined globally on C̃i. Denote this branched

cover by ηi : C̃i → C̃i−1. We now describe the central fibre C̃i0 = {v = 0} of C̃i. First, note that

according to equation (2.1) above, C̃i0 = 1
pi
η∗iD

i−1. Let Di−1
j be a component of Di−1. Then,

η∗iD
i−1
j is determined with respect to the following cases:

• if Di−1
j is a component not intersecting any component of the branch locus Di−1

mod pi
, its

inverse image is an unramified, pi-sheeted cover of Di−1
j , i.e. pi distinct copies of Di−1

j .

Each of these copies of Di−1
j has the same multiplicity as Di−1

j .

• if Di−1
j is a component intersecting the branch locus in r points, its inverse image is a

pi-sheeted cover of Di−1
j that is branched at r points. This is a smooth curve whose

genus can be computed using the Riemann-Hurwitz formula, see [Har83, IV, Corollary
2.4], which for this particular situation asserts that

2g(η−1
i (Di−1

j ))− 2 = pi(2g(Di−1
j )− 2) + r(pi − 1). (2.2)

The multiplicity of this curve equals the multiplicity of Di−1
j .

• if Di−1
j is contained in the branch locus, its inverse image is a pi-fold copy of Di−1

j . The

multiplicity of η−1
i Di−1

j therefore equals the multiplicity of Di−1
j multiplied by pi.

This finishes the description of the intermediate steps. It follows from the local description of
such branched coverings, cf. the proof of Lemma 2.6, that these operations are independent of
the order of the pi’s.
We claim that performing these steps for all primes from the prime factorisation of l yields the
same result as pullback of order l followed by normalisation. Note that iteration of the procedure
above indeed yields a normal total space C̃ whose central fibre is reduced, connected with smooth
components intersecting transversally. This can be seen as follows: For the reducedness, consider
any component ajDj of the central fibre of our initial family π : C → B. Let p1, . . . , ps be
the primes dividing aj . Whenever we pass to the branched cover of order pi as above where
i ∈ {1, . . . , s}, Dj is not a component of the branch divisor D mod pi , thus will either split into

1We always work with a representative aj mod pi ∈ {0, . . . , pi − 1}.
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2.1 Semistable reduction for curves

several copies of itself or become a curve of possibly different genus. In both cases the multiplicity
of the components of the central fibre of the branched cover branched along D mod pi that arise
as the pullback of Dj is

aj
pi

. Consequently, after taking the respective branched covers of orders
p1, . . . ps, the multiplicities of the components coming from Di all are equal to ai

p1···ps = 1. Since
we have chosen l to be the least common multiple of all the ai’s, all components of the central
fibre of C̃ have multiplicity one and C̃0 is reduced.
It remains to prove normality of C̃. Lemma 2.6 below gives a precise description of the singular
locus of the covering space of a finite covering that is branched along a divisor. In particular,
after performing the final step of this procedure, Lemma 2.6 tells us that the total space can
be singular in points only, since the last branch divisor has reduced components intersecting in
points only. Thus, since C̃ is locally a subvariety of C3 defined by one equation and is smooth
in codimension one, it is normal by Serre’s criterion for normality, cf. [Liu02, Theorem 8.2.23].
To sum up, the procedure described above yields a normal total space C̃ and a central fibre C̃0

as asserted, that is, reduced with smooth components intersecting transversally.

We now argue that the result is the same as when taking the base change ϕ of order l followed
by passing to the normalisation C′ of ϕ∗C. That is, we want to show that C̃ = C′. This follows
already from the uniqueness of semistable reduction that we will prove independently in step
four. The remainder of this step gives an alternative and direct proof of this fact but is logically
not necessary for the proof. Consider the following diagram

C′

ψ

��

∼
C̃ = C̃r

%%

µ

��

C̃2

ψ2
��

η2

**
(ψ1×id)|C2◦ψ2

&&

C2 = C̃1 ×B1 B2
pr1 //

(ψ1×id)|C2
��

C̃1

η1

''
ψ1

��

ϕ∗C
pr2

$$

// (ϕ1 ◦ ϕ2)∗C = C̃1 ×B1 B2
pr1 //

pr2

��

C1 = C̃0 ×B0 B1
pr1 //

pr2

��

C̃0 = C

��
B′ = Br // B2

ϕ2 // B1
ϕ1 // B0 = B

showing µ = (ψ1× id) |C2 ◦ · · ·◦(ψr−1× id) |Cr ◦ψr. Then µ is a finite birational morphism, since
every of the ψi is finite and birational. This gives two maps ψ : Ĉ→ ϕ∗C and µ : C̃→ ϕ∗C, both
finite regular morphisms from a normal variety to ϕ∗C and one of them is the normalisation. It
then follows from [Sha13a, Theorem 2.21] that C′ ∼= C̃ as we asserted.
It remains to argue that π′ : C′ → B′ is flat. This follows from [Har83, Proposition 9.2, page
254], stating that the finite base change preserves flatness, together with [Har83, Proposition
9.7, page 257], implying that in our particular situation passing to the normalisation of the total
space retains flatness, see the argument in step one.
As we will later see, it is sufficient to perform the algorithm up to this point to be able to compute
the degenerate Picard scheme of the family π : C→ B.

Step 3 (Smoothing the total space).

We now assume that we are in the situation obtained after step two, i.e. that we are given a
family π : C→ B such that the central fibre C0 is reduced with smooth components intersecting
transversally. The family π : C→ B can thus be expressed in local coordinates x, y on C and t
on B by either tm = x or tm = xy, where the first case appears locally around smooth points of
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2 Tail reduction for transverse curve singularities

the central fibre and the second case locally around the nodal points of the central fibre. The
total space C can be singular at most at the singular points of the central fibre C0. Consider
such a point, i.e. a point p ∈ C, where π is given by tl = xy. If l = 1, the point p is a smooth
point of C. If l > 1, p is a singular point of C and its type is Al−1. By taking a minimal
resolution C̃→ C of the singularities of C, we replace each singular point p in C of type Al−1 by
a chain of (l− 1) rational curves, see for example [BHPV04, III, section 6 and 7]. The minimal
resolution C̃ → C now gives a flat family π̃ : C̃ → B with smooth total space and central fibre
C̃0 defining a reduced simple normal crossing divisor in C̃. Flatness of this family follows again
from [Har83, Proposition 9.7, page 257].

Step 4 (Obtaining a (semi-)stable central fibre). To obtain the semistable reduction, we
have to blow down the smooth rational components of C̃0 that meet the rest of C̃0 only once.
This yields the asserted family π′ : C′ → B′ with semistable central fibre. To obtain a stable
reduction, we also need to blow down all smooth rational components of C′0 that meet the rest
of C′0 only twice. We refer to [HM98, Section 3.C] and [ACG11, Chapter X, section 4] for further
details.

Step 5 (Uniqueness). It is sufficient to prove uniqueness for the central fibre of a stable
reduction. The asserted uniqueness of the central fibre of a semistable reduction, that is,
uniqueness up to contractions of smooth rational components of the central fibre that meet the
rest of the central fibre in fewer than three points, is then an immediate consequence. For a
proof of uniqueness of the central fibre of a stable reduction see [ACG11, Chapter X, section
5].

2.5 Remark. Our assumptions on the family π : C → B are more restrictive than necessary.
See [HM98, Chapter 3] for a more general version of Theorem 2.2 and Theorem 2.3.

In the proof we used the the following Lemma 2.6 and Corollary 2.7.

2.6 Lemma. Let η : S → T be a b-sheeted cover of a variety T that is branched along a divisor
B = {f = 0}. Then each singular point of S lies over a singular point of T or a singular point
of B.

Proof. We may assume that S, T are affine, say T = Spec(C[x1, . . . , xn]/〈g〉), where g =
(g1, . . . , gr) are defining equations for T , by working algebraically locally. The singular points of
T are the points where the rank of the Jacobian of g, Jac(g), is not maximal. The b-sheeted cov-
ering of the ambient Cn branched alongB = {f = 0} is given by Spec(C[t, x1, . . . , xn]/〈tb−f〉)→
Spec(C[x1, . . . , xn]). We have the following commutative diagram

T = Spec(C[x1, . . . , xn]/〈g〉)
OO
η

Spec(C[x1, . . . , xn])//
OO

S = Spec(C[t, x1, . . . , xn]/(〈g〉+ 〈tb − f〉) Spec(C[t, x1, . . . , xn]/〈tb − f〉).//

The covering space S is singular in all points where the rank of the Jacobian matrix of its
defining equations is not maximal. Since

Jac(g, tb − f) =


∂g1
∂t

∂g1
∂x1

· · · ∂g1
∂xn

...
...

...
∂gr
∂t

∂gr
∂x1

· · · ∂gr
∂xn

∂(tb−f)
∂t

∂(tb−f)
∂x1

· · · ∂(tb−f)
∂xn

 =


0
...
0

Jac(g)

btb−1 Jac(f)

 ,

we have that a point of S is a singular point if and only if

a) the rank of Jac(g) or of (btb−1, Jac(f)) is not maximal, or,
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2.2 Computation of semistable reduction for curves with ADE-singularities

b) t = 0, Jac(g) and Jac(f) have maximal rank, but Jac(f) is a linear combination of rows
of Jac(g).

If t = 0 and Jac(f) is a linear combination of rows of Jac(g), there exist αi,j such that

∂f

∂xi
=

r∑
j=1

αi,j
∂gj
∂xi

, i = 1, . . . , n.

But this implies that on T = {g1 = · · · = gr = 0} the function f is constant and since B 6= ∅,
f vanishes identically on all of T . This contradicts the assertion that B = {f = 0} is a divisor
in T , thus case b) cannot occur. Points in which rank(Jac(g)) is not maximal are the singular
points of T ; points in which rank(btb−1, grad(f)) is not maximal correspond to the singular
points of B. Consequently, every singular point of S corresponds to either a singular point of
T or one of B.

2.7 Corollary. Let η : S → T be a b-sheeted cover of a smooth variety T that is branched along
a divisor B ⊂ T . Then there is a one-to-one correspondence between the singular points of B
and those of S.

As we mentioned in the proof of Theorem 2.3, for computing the degenerate Picard scheme
of the family π : C→ B, it is sufficient to perform steps one and two from the proof of Theorem
2.3. This is, as we will prove in the following section, because performing these steps enables
us to identify the, besides the normalisation Cν0 , only non-rational component T of the central
fibre of a semistable reduction, the so-called tail of the semistable reductions

2.8 Definition (Tail reduction for families of curves). The family obtained by performing the
algorithm from the proof of Theorem 2.3 up to step two is called the tail reduction of the initial
family π : C→ B.

2.2 Computation of semistable reduction for curves with
ADE-singularities

We compute semistable reductions for smoothings of curves with a unique singular point of type
Ak explicitly. This enables us to describe the degenerate Picard scheme of such curves in section
2.3, and also turns out to be related to the degenerate Picard scheme of F (X) when X ⊂ P4 is
a singular cubic threefold with a unique singular point of type Ak, cf. section 2.4 for the case
k = 2 and section 3.3 for the general case.

Let π : C → B be a family of curves defining a smoothing of C0 and assume that C0 has
a unique singular point of type Ak. Following the algorithm from the proof of Theorem 2.3,
we need to begin by taking successive blowups of C at the singular point of C0 until we have
resolved the singularity of C0. Table 2.1 displays, in dependence of the singularity type of the
singular point of C = C0, the singularities of the strict transform C̃ and total transform C̃ ∪E
after a single blowup of the singular point of C. Here, E denotes the exceptional divisor of the
blowup. For a discussion of multiplicities see Lemma 2.9 below.

C A1 A2 Ak,k≥3 D4 D5 Dk,k≥6 E6 E7 E8

C̃ 2A0 A0 Ak−2 3A0 2A0 A0 +Ak−5 A0 A1 A2

C̃ ∪ E 2A1 A3 Dk+1 3A1 A1 +A3 A1 +Dk−2 A5 D6 E7

Table 2.1: Singularities of strict and total transform of a singular curve, [Dim87, Table 10.31]

It is simple to obtain this table using the local normal forms of ADE-singularities from
Table 1.1 and by calculating the respective blowups locally. Table 2.1 already yields a precise
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2 Tail reduction for transverse curve singularities

description of the mutual intersections of the components of the total transform under a strong
embedded resolution of a curve singularity of ADE-type. What cannot be deduced from Table
2.1 are the multiplicities of the components of the total transform under a strong embedded
resolution.

2.9 Lemma. Let C be a singular curve with a unique singular point of type Ak. Then, the
central fibre of a strong embedded resolution of C has the following dual graph, depending on
the parity of k,

E1 E2 El
El+2

El+1

Cν
2 4 2l

2l + 1

4l + 2

1

A2l

E1 E2 El El+1 Cν
2 4 2l 2l + 2 1

A2l+1

wherein Ei denotes the exceptional divisor from the i-th blowup and l =
⌈
k−1

2

⌉
. Each ver-

tex of the dual graph corresponds to an irreducible component of the total transform of C, two
vertices are joined by an edge for every irreducible component of their mutual intersection, and
the circled numbers indicate the multiplicities of the respective component.

Proof. The curve C is locally around its singular point analytically isomorphic to the curve

{x2 − yk+1 = 0} ⊂ C2,

where x, y denote the coordinates on C2. We compute successive blowups at the singular point
of C and its strict transforms. Here, x, y, u, v, x̄, ȳ, ū, ȳ always denote local coordinates in the
respective affine charts.
Blowing up the singular point yields the following total transforms in the respective charts:

chart 1: u2(1− v2uk−1) = 0,

chart 2: v̄2(ū2 − v̄k−1) = 0.

The first chart doesn’t contain the singular point of the strict transform, therefore remains
unchanged under succeeding blowups. Blowing up the second chart in the singular point of the
strict transform, which now is of type Ak−2, gives

chart 2.1: x4y2(1− yk−1xk−3) = 0,

chart 2.2: ȳ4(x̄2 − ȳk−3) = 0.

In chart 2.1 we see the transversal intersection of the exceptional divisor E1 from the first blowup
with the exceptional divisor E2 from the second blowup. Moreover, the strict transform in this
chart is smooth and the exceptional divisor E1 does not contain the centre of the succeeding
blowup, therefore remains unchanged under further blowups. In particular, it retains its multi-
plicity. We can moreover see that the situation for chart 2.2 is the same as for chart 2 of our
initial blowup but with the multiplicity of the exceptional divisor raised by two. This enables us
to conclude by performing a simple induction that the multiplicities of the exceptional divisors
appearing until the strict transform is smooth, are the ones we asserted. If k = 2l+1 is odd, this
proves the assertion already, since the components of the total transform under these blowups
intersect each other transversally. If k = 2l is even, the resulting charts after l =

⌈
k−1

2

⌉
blowups

are

chart l.1: x2ly2l−2(1− y3x) = 0,

chart l.2: ȳ2l(x̄2 − ȳ) = 0.
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2.2 Computation of semistable reduction for curves with ADE-singularities

The total transform admits a singular point of type A3 in the second of these charts and this
point is the point of intersection of the strict transform x̄2 − ȳ = 0 with the exceptional divisor
El = {ȳ2l = 0} from the last blowup. Blowing up the point of intersection affects only the
second of these charts, as the first one does not contain the centre of blowup. We obtain

chart (l + 1).1: v2l+1(u2v − 1) = 0,

chart (l + 1).2: v̄2lū2l+1(ū− v̄) = 0.

Therefore, the exceptional divisor El+1 = has multiplicity 2l + 1. The total transform admits
a singular point of type D4 in the second of these charts, we thus need to perform another
blowup. Again, the first of these charts does not contain the centre of blowup. The resulting
local equations are

chart (l + 2) .1: x2l+1y4l+2(x− 1) = 0,

chart (l + 2) .2: ȳ2lx̄4l+2(1− ȳ) = 0.

The exceptional divisor El+2 consequently appears with multiplicity 4l+ 2. Moreover, the total
transform admits singularities of type A1 only, that is, it defines a simple normal crossing divisor
in the blown-up total space. This completes the proof.

2.10 Lemma. Let C0 admit a unique singular point of type Ak and assume that k = 2l + 1 is
odd. If π′ : C′ → B′ denotes the tail reduction of the family π : C→ B, the dual graph of C′0 is

E1
1

E2
1

E1
l−1

E2
l−1

E1
l

E2
l

T Cν0

1

1

1

1

1

1

1 1

where T is a smooth curve of genus g(T ) = l, Cν0 denotes the normalisation of C0 and every
other component is a smooth rational curve.

Proof. After passing to a strong embedded resolution, we can assume that the central fibre has
dual graph as in Lemma 2.9. Following the algorithm from the proof of Theorem 2.3, we need
to consider the least common multiple of the multiplicities of the components of the central
fibre. Note that these multiplicities are 2, 4, 6, . . . , 2l, 2(l+1), 1, thus the least common multiple
of this numbers is divisible by two,

2 | lcm(1, 2, 4, 6, . . . , 2(l + 1)).

Let η1 be the branched cover of order two branched along the divisor D0 reduced modulo two,
where D0 denotes the divisor corresponding to the central fibre. It is clear that the branch
divisor has only one component and that this component is Cν0 . Following the description of
η∗1(D0

j ) from the proof of Theorem 2.3, we obtain that g(η∗1(El+1)) = 0 and that

η∗1(2E1 + 4E2 + · · ·+ 2lEl) = (E1
1 + · · ·+ lE1

l ) + (E2
1 + · · ·+ lE2

l )

with corresponding dual graph

E1
1

E2
1

E1
2

E2
2

E1
l−1

E2
l−1

E1
l

E2
l

El+1 Cν0

1

1

2

2

l− 1

l− 1

l

l

l + 1 1
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2 Tail reduction for transverse curve singularities

wherein the multiplicities of the components E1
1 , . . . , E

1
l , E

2
1 , . . . , E

2
l are the natural numbers up

to l. To see what happens to these components, note that the Riemann-Hurwitz formula (2.2)
yields g(η∗i (D

i−1
j )) = 0 whenever the number r of intersection points with the branch locus is

r = 2 and g(Di−1
j ) = 0. For every prime p and natural number m ∈ {1, . . . , l}, it is obvious that

m mod p = 0 =⇒ (m− 1) mod p 6= 0, (m+ 1) mod p 6= 0.

But this means that for each component E ∈ {E1
1 , E

2
1 , . . . , E

1
l , E

2
l } of the central fibre and any

of the branched covers η of prime order from the proof of Theorem 2.3, E is either a component
of the branch locus or intersects the branch locus in precisely two points. In both cases, the
genus of E stays zero through all of the tail reduction process.

It remains to describe the effect of the respective branched coverings on the component El+1.
This component always intersects the branch divisor in at least two points, since Cν0 necessarily
is a component of the branch locus for every prime. For a prime p there are two possibilities.
Either l + 1 mod p = 0 and l mod p 6= 0, or l + 1 mod p 6= 0. In the second case, El+1 is a
component of the branch divisor, therefore retains its genus when taking the pullback under the
respective branched cover of order p from the proof of Theorem 2.3. In the first case, El+1 is
not a component of the branch divisor but intersects the branch divisor in precisely four points.
Write l + 1 = p1 · · · · · pr with p1, . . . , pr prime. If the number of intersection points with the
branch divisor is four, the Riemann-Hurwitz formula (2.2) gives

g(η−1
i (Di−1

j )) = pig(Di−1
j ) + pi − 1, (2.3)

where ηi is as in the proof of Theorem 2.3. In particular,

g((ηr ◦ ηr−1)−1(Dr−2
j )) = pr(pr−1g(Dr−2

j ) + pr−1 − 1) + pr − 1

= prpr−1g(Dr−2
j ) + prpr−1 − 1,

and, since g(D0
j ) = 0, by iterating this formula,

g(T ) = g((ηr ◦ · · · ◦ η1)−1(El+1)) =

r∏
i=1

pi − 1 = l + 1− 1 = l,

where T = (ηr ◦ · · · ◦ η1)−1(El+1).

2.11 Lemma. Let C0 admit a unique singular point of type Ak and assume that k = 2l is even.
If π : C′ → B′ denotes the tail reduction of the family π : C→ B, the dual graph of C′0 is

E1
1

E2
1

E1
l−1

E2
l−1

E1
l

E2
l

T

E1
l+1

. . .E2l+1
l+1

Cν0

1

1

1

1

1

1

1

11

1

where T is a smooth curve of genus g(T ) = l, Cν0 denotes the normalisation of C0 and every
other component is a smooth rational curve.

Proof. The argument for the components E1, . . . , El is the same as in the proof of Lemma 2.10.
After taking the initial branched covering of order two, the dual graph of the central fibre is

E1
1

E2
1

E1
2

E2
2

E1
l−1

E2
l−1

E1
l

E2
l

El+2

El+1

Cν0

1

1

2

2

l− 1

l− 1

l

l

2l + 1

2l + 1

1
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2.3 Degenerate Picard schemes of singular curves

Note that, since the multiplicity of the component El+1 is odd, this component retains its
multiplicity. Moreover, for every prime p, El+1 cannot intersect the branch locus of the branched
covering of order p in finitely many points as is clear from the dual graph given above, and
therefore gives rise to 2l + 1 disjoint copies of El+1 in the central fibre of the tail reduction.

It remains to discuss the component El+2. If p is any prime either 2l + 1 mod p = 0 and
l mod p 6= 0 or 2l + 1 mod p 6= 0 and l mod p = 0. (In fact, if l =

∏
qi with qi prime, then

2l + 1 = 2
∏
qi + 1 and l mod p = 0 implies that 2l + 1 mod p 6= 0. Conversely, if 2l + 1

mod p = 0, then l mod p 6= 0 follows, by assuming the contrary, from the argument we just
gave.) If 2l + 1 mod p 6= 0 and l mod p = 0, we have that El+2 is a component of the branch
divisor and therefore retains its multiplicity. In the other case, where 2l + 1 mod p = 0 and l
mod p 6= 0, the intersection of El+2 with the branch divisor consists of precisely three points.
Just as in the proof of Lemma 2.10, we can compute the genus of T = (η1 ◦ · · · ◦ ηr)−1(El+2),
where l = p1 · · · pr and the ηi are as in the proof of Theorem 2.3, using an iterative formula
coming from the Riemann-Hurwitz formula (2.2) with r = 3. The formula obtained this way
is the same as (2.3) but with both genera multiplied by a factor of two. Since g(D0

j ) = 0,
this doesn’t affect the calculations we made in the proof of Lemma 2.10 and we likewise obtain
g(T ) = l.

2.12 Remark. It can be shown, using the same arguments as in [HM98, page 126], that the
stable reduction of a family C → B as above with the central fibre having a unique singular
point of type Ak has two components, one being the normalisation Cν0 of C0 and the other a
smooth curve T of genus g(T ) = bk−1

2 c. The intersection of these two components is a single
point, if k is even, and two distinct points, if k is odd. In other words, that the stable reduction
is obtained by contracting the smooth rational components Eji in the notation of Lemma 2.10
and Lemma 2.11. A computation of the curves T can also be found in [Has00a].

2.13 Definition (Tail of a curve with respect to a degeneration). Let π : C→ B be a smoothing
of a curve C = C0 with a unique singular point of type Ak and denote by π′ : C′ → B′ the tail
reduction of π : C → B. Then the curve T in the notation of Lemma 2.10 and Lemma 2.11 is
called the tail of C0 with respect to the family π : C→ B.

2.3 Degenerate Picard schemes of singular curves

In this section we utilise the algorithm from the proof of Theorem 2.3 to compute the degenerate
Picard scheme of a curve with a unique singular point of type Ak. Let π : C→ B be a smoothing
of such a curve and denote by π′ : C′ → B′ the tail reduction of π : C→ B. Thus, C′0 is reduced
with smooth components intersecting transversally. We denote the tail of C0 with respect to
the family π : C→ B by T .

2.14 Lemma (Picard group of reducible varieties). Let Y = Y1 ∪ Y2 be a compact, reducible
variety such that Y1 ∩ Y2 is connected, non-empty, Y1, Y2 are smooth along Y1 ∩ Y2, and the
intersection of Y1, Y2 along Y1 ∩ Y2 is transverse. Then,

Pic(Y ) ∼= Pic(Y1)×Pic(Y1∩Y2) Pic(Y2). (2.4)

The same identity holds for the Picard scheme.

Proof. Consider the exact sequence

1→ O∗Y → O∗Y1 ×O
∗
Y2 → O

∗
Y1∩Y2 → 1

in which the map O∗Y1 ×O
∗
Y2
→ O∗Y1∩Y2 is given by (λ, µ) 7→ λ |Y1∩Y2 ·µ |−1

Y1∩Y2 . The associated
long exact sequence in cohomology starts as follows

1 // C∗ // C∗ × C∗ α // C∗ // Pic(Y )
β // Pic(Y1)× Pic(Y2)

γ // Pic(Y1 ∩ Y2),
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2 Tail reduction for transverse curve singularities

where we used the assumptions on Y1 ∩ Y2 to obtain H0(Y1 ∩ Y2,O∗Y1∩Y2) ∼= C∗ and identified
isomorphism classes of analytic line bundles with algebraic ones using Serre’s GAGA theorems
[Ser56]. The map α is surjective, so we may end the sequence on the left by 0 = coker(α).
Furthermore, β(L) = (L |Y1 , L |Y2) and γ(L,M) = L |Y1∩Y2 ⊗M |∨Y1∩Y2 and we may end the
sequence on the right by img(β) = ker(γ) = Pic(Y1)×Pic(Y1∩Y2) Pic(Y2). Altogether this proves
the assertion.

2.15 Corollary. If the intersection Y1∩Y2 in Lemma 2.14 has two connected components, there
is an exact sequence

1 −→ C∗ −→ Pic(Y ) −→ Pic(Y1)×Pic(Y1∩Y2) Pic(Y2) −→ 0. (2.5)

Proof. The map α : H0(O∗Y1 × O
∗
Y2

) → H0(O∗Y1∩Y2) in the proof of Lemma 2.14 maps to the
diagonal in H0(O∗Y1∩Y2) ∼= C∗×C∗, therefore is no longer surjective. The remainder of the proof
carries over verbatim.

2.16 Remark. If the intersection Y1 ∩ Y2 in Lemma 2.14, respectively Corollary 2.15 consists
of points only, H1(Y1 ∩ Y2,O∗Y1∩Y2) = 0 and the map β : Pic(Y ) → Pic(Y1) × Pic(Y2) from the
proof of Lemma 2.14 is always surjective. Therefore, the fibre product in (2.4) and (2.5) then
equals the ordinary product.

As all rational components of C′0 intersect the rest of the C′0 in precisely one point, it follows
from Lemma 2.14 that Pic0(C′0) ∼= Pic0(Cν0 ∪ T ). If k is even, the intersection Cν0 ∩ T is a single
point and Lemma 2.14 identifies Pic0(C′0) with Pic0(Cν0)×Pic0(T ). If k is odd, the intersection
Cν0 ∩ T consists of two distinct points p1, p2 and by Corollary 2.15 we find an exact sequence

1 −→ C∗ −→ Pic0(C′0) −→ Pic0(Cν0)× Pic0(T ) −→ 0. (2.6)

Let Ag denote the moduli space of principally polarised Abelian varieties of dimension g and
let further AVor

g denote the second Voronoi compactification of Ag. Every point of AVor
g is

completely determined by a set of degeneration data by results due to G. Faltings and C.-L.
Chai [FC90, Chapter II] and V. Alexeev [Ale02]. Following the notation of [ABH02, section
2.1] we denote these degeneration data by (d0)–(d4). For k even, Pic0(C′0) ∈ Ag and we do not
have do deal with these degeneration data at all, since they are all trivial in this case. On the
other hand, if k is odd, Pic0(C′0) /∈ Ag but the exact sequence (2.6) determines the degeneration
data (d1) and, as (2.6) defines an extension of an element in Ag−1 by a C∗, in fact also the

degeneration data (d0), (d2)–(d4) and therefore determines a unique point Pic0(C′0) ∈ AVor
g .

The point Pic0(C′0) corresponds to a semi-abelic variety containing Pic0(C′0) as an dense open
subset.
Therefore, Pic0(C′0) determines a point of AVor

g in both cases.

Since AVor
g is a coarse moduli space, the family π′ : C′ → B′ gives rise to a morphism

j′ : B′ → AVor
g , b 7→ Pic0(C′b)

with j′(0) = Pic0(C′0), the semi-abelic variety determined by Pic0(C′0). On the other hand, we
have a morphism

j : B∗ → Ag ⊂ AVor
g , b 7→ Pic0(Cb)

that extends to a morphism j̄ : B → AVor
g by [Har83, I, Proposition 6.8]. Consider the diagram

B′
j′ //

ϕ

��

AVor
g

B
j̄

77
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2.4 Tail reduction for transverse curve singularities

with ϕ the branched cover of order l totally ramified over 0 ∈ B as in the proof of Theorem
2.3. Obviously, (j̄ ◦ ϕ) |(B′)∗= (j′) |(B′)∗ , as the families C → B and C′ → B′ only differ in the
central fibre. In other words, j′ is a lift of j̄ via ϕ. But this already implies j′(0) = j̄(0) by
[Har83, I, Lemma 4.1].

2.17 Definition (Degenerate Picard scheme). With notations as above, we call the point j̄(0) ∈
AVor
g the degenerate Picard scheme of C0 with respect to the family π : C→ B and denote it by

j̄(0) = lim
b→0

Pic0(Cb) = Pic0(C′0).

2.18 Remark. The degenerate Picard scheme lim
b→0

Pic0(Cb) can indeed be understood as limit

of points in AVor
g , justifying our notation. Moreover, it determines a point of Mumford’s partial

compactification A′g of Ag.

Our discussion above provides the following corollary.

2.19 Corollary (Degenerate Picard schemes of singular curves). Let π : C→ B be a smoothing
of a curve C0 with a unique singular point of type Ak. Then, the degenerate Picard scheme of
C0 with respect to the family π : C→ B is completely determined by the exact sequence

1 −→ K −→ Pic0(C′0) −→ Pic0(Cν0)× Pic0(T ) −→ 0,

where T is a smooth curve of genus g(T ) = bk−1
2 c and π′ : C′ → B′ is the tail reduction of

π : C→ B. Moreover,

K =

{
C∗, if k is odd;

0, if k is even.

2.20 Corollary (Degenerate Picard schemes of the Hilbert square of a singular curve). Let Y
be a curve with a unique singular point of type Ak and let Y → B be a smoothing of Y = Y0.
Then, as points of AVor

g ,

lim
b→0

Pic0(Hilb2(Yb)) = lim
b→0

Pic0(Yb).

Proof. The relative Hilbert scheme π : H→ B with Hb = Hilb2(Yb) is flat over B by a result of
A. Grothendieck [Gro62, IV]. Consider the maps

jY : B \ {0} → Ag, b 7→ Pic0(Yb),

jH : B \ {0} → Ag, b 7→ Pic0(Hb),

and denote by j̄y, j̄H their extensions to AVor
g . Since Hilb2(Yb) ∼= Sym2(Yb) for all b 6= 0 and

Pic0(Sym2(Yb)) ∼= Pic0(Yb) for all b 6= 0 by Lemma 2.26, we have that j̄Y(b) = j̄H(b) holds for
b 6= 0. But then, j̄Y(0) = j̄H(0) by [Har83, I, Lemma 4.1] proving the assertion.

2.4 Tail reduction for transverse curve singularities

As we have shown in the previous section, computing the central fibre of a tail reduction of a
family of curves enables us to compute the degenerate Picard scheme of its central fibre. In this
section, we show that the algorithm from the proof of Theorem 2.3, which we used to compute
the tail reduction, can be generalised to varieties with transverse curve singularities along a
smooth singular locus. As a particular example of this, we consider the Fano scheme of lines
on a cubic threefold X with a unique singular point p0 of type A1 or A2. The singular locus
Σ of F (X) is then smooth, cf. Lemma 1.5, and F (X) admits transversally along Σ a curve
singularity of the same type as (X, p0), cf. Theorem 1.29. We prove that the degenerate Picard
scheme of F (X) is the same as the degenerate Picard scheme of a curve C with unique singular
point of the same type as (X, p0).
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2 Tail reduction for transverse curve singularities

2.21 Lemma (Strong embedded resolution for transverse curve singularities along a smooth
singular locus). Let Z0 ⊂ Z be varieties. Let S ⊂ Z be a variety such that its intersection S0

with Z0 is the singular locus of Z0, i.e. S0 = S ∩ Z0 = (Z0)sing. If, for a fixed k ∈ N, Z0 has

transverse curve singularities of type Ak along S0, there exists a variety Z̃ together with a map
b : Z̃ → Z that can be factored as a sequence of blowups with centres lying above S and such that
b−1(Z0) is a simple normal crossing divisor in Z̃. Moreover, all but one component of b−1Z0

are locally trivial algebraic fibre bundles over S with fibre P1 and the remaining component Ẑ0

of b−1(Z0) is characterised by the property that b |
Ẑ0

: Ẑ0 → Z0 is a resolution of singularities of
Z0.

Proof. Consider the blowup bS : BlSZ → Z of the ambient variety Z along S. It restricts over
Z0 to BlS0Z0 → Z0, the blowup of Z0 along its singular locus, cf. [Har83, II, Corollary 7.15]. As
Z0 admits transversal singularities of type Ak along S0, for every point s ∈ S0 there exists an
analytic neighbourhood U = U(s) ⊂ Z0 such that U ∼= (S0 ∩ U)× Y , where Y = {xk+1 + y2 =
0} ⊂ C2. Since S0 is assumed to be smooth, we can assume that S0 ∩ U ∼= ∆ ⊂ Cp for some p,
where ∆ is a domain, that is, open, connected and non-empty. We thus have an identification

U ∼= (S0 ∩ U)× Y ∼= ∆× {(x, y) ∈ C2 | xk+1 + y2 = 0} ⊂ Cp × C2. (2.7)

Taking the blowup BlS0∩UU → U means blowing up the locus x = y = 0 in the above. Therefore,
taking successive blowups along S0 ∩ U and its respective strict transforms is the same as
performing at all points of S0 ∩U at once an embedded resolution of a curve singularity of type
Ak. The resulting total transform of U then has components of the form (S0 ∩ Us) × P1 and
(S0∩U)×Y ν , where Y ν denotes the normalisation. Their mutual intersection and multiplicities
are described by the respective dual graphs in Lemma 2.9 but with edges now being the products
we just described and two vertices joined by an edge, if their intersection is isomorphic to S0∩U .
The local description we gave describes the total transform of Z0 under the blowup of Z along S
completely as the local blowups necessarily glue, cf. [Sha13b, Section 2.2]. We of course cannot
expect that the components which locally over U are products of the form S0 ∩U times a curve
also have this property globally and therefore only obtain total spaces of locally trivial analytic
fibre bundles over S0 instead of (global) products. As any locally trivial analytic P1 bundle over
a smooth projective variety is algebraic, see [Har83, II, exercise 7.10], the assertion follows.

2.22 Theorem (Tail reduction for transverse curve singularities). Let π : Z → B be a flat
family of varieties over a smooth curve B such that Zb = π−1(b) is smooth for b 6= 0 and such
that Z0 has smooth singular locus S0 ⊂ z0 and a curve singularity of type Ak transversally along
S0. Then, there exists a branched cover ϕ : B′ → B totally ramified over 0 ∈ B and a flat family
of varieties π′ : Z′ → B′ that differs from π : Z→ B only in the central fibre and such that the
central fibre Z′0 ⊂ Z′ is reduced with smooth components intersecting transversally.

Proof. Lemma 2.21 shows that step one from the proof of Theorem 2.3 can be generalised to
varieties with a transversal curve singularity of type Ak along a smooth singular locus. We
therefore can assume that Z is smooth, Z0 ⊂ Z defines a simple normal crossing divisor, and
that all but one component of Z0 are total spaces of locally trivial algebraic P1-bundles over S.
It is then left to show that the second step of the proof of Theorem 2.3 can likewise be generalised.

Let D =
∑
j
ajDj be the divisor corresponding to the central fibre Z0 ⊂ Z. If p ∈ Z0 is

any point, it is clear from the local descriptions we gave in the proof of Lemma 2.21 and the
smoothness of Z, that in an analytic neighbourhood U = U(p) ⊂ Z of p in Z,

U ∼= ∆× {t = xayb} ⊂ Cp × C2 × C,

where S0 ∩ U ∼= ∆ ⊂ Cp, x, y denote local coordinates on the factor C2 and t is a local
coordinate on B∩π(U) ∼= ∆′ ⊂ C. Let z = (z1, . . . , zp) denote coordinates on the factor Cp and

44



2.4 Tail reduction for transverse curve singularities

let c ∈ ∆ ⊂ Cp be a point. Then, C = Z∩U ∩ {z = c} → π(B) is a flat family of curves and we
write D =

∑
j
ajDj for the divisor corresponding to the central fibre C0 ⊂ C. Note that on U ,

D ∩ U =
∑
j

aj(Dj ∩ U) =
∑
j

aj(∆×Dj) (2.8)

holds, as is again clear from the local description we gave in the proof of Lemma 2.21. Let
l = lcm(aj | j) = p1 · · · · · pr with p1, . . . , pr prime. If Hi denotes the branched covering of Z of
order pi branched along D mod pi , (2.8) implies that Hi |U= id∆ × ηi, where ηi is the branched
cover of C of order pi branched along D mod pi . Thus, the effect of applying Hi is to perform
the operations from step two of the proof of Theorem 2.3 at all points of S0 at once. The result
after applying these operations successively for i = 1, . . . , r as in the proof of Theorem 2.3, is
a new family π′ : Z′ → B′ whose central fibre has dual graph as in Lemma 2.10, if k is odd,
and as in Lemma 2.11, if k is even, but with edges corresponding to total spaces of algebraic
P1 bundles over S0 and two vertices joined by an edge, if they intersect. Each intersection is a
smooth curve isomorphic to S0 by construction.

Before applying Theorem 2.22 to a smoothing of the Fano scheme of lines on a cubic threefold
X ⊂ P4 with a unique singular point p0 of type A1 or A2, we describe a resolution of singularities
of F (X), cf. the description of the central fibre in Lemma 2.9.

Let Σ = Σ2 ∩ Σ3 ⊂ H ∼= P3 ⊂ P4 be the complete (2, 3)-intersection associated to X ⊂ P4,
parameterising the lines in X through p0, as discussed in chapter one. As X admits a unique
singular point of type A1 or A2, it follows from Lemma 1.5 that Σ is a smooth curve. We
construct a morphism ϕ : Sym2(Σ) → F (X) that will turn out to be the normalisation of
F (X). For cubic threefolds with a unique singular point of type A1, this construction goes
back to H. Clemens and P. Griffiths, [CG73, section 8], and has also been studied from a more
algebraic perspective by A. Collino and J. P. Murre, [CM78].
For every point η = P+Q ∈ Sym2(Σ) consider the plane Eη = 〈s(P,Q), p0〉 ∼= P2, where s(P,Q)
denotes the secant to Σ passing through the points P,Q. We interpret s(P,Q) as the unique
tangent to Σ at P , if P = Q. Since no plane can be contained in X, see Proposition 2.23 below,
the intersection X ∩Eη defines a plane cubic containing the lines lP = 〈P, p0〉 and lQ = 〈Q, p0〉,
respectively the line 〈P, p0〉 twice, if P = Q. Every plane cubic containing two lines necessarily
contains a third and if we denote this third line by lη, we obtain a map ϕ : Sym2(Σ) → F (X)
by setting ϕ(η) = lη.

2.23 Proposition ([Seg88, section 5 and section 38]). Let X ⊂ P4 be a cubic threefold. If X
contains a plane, then it contains at least four double points or a point of multiplicity at least
three.

The line lη defines a singular point of F (X) if and only if p0 ∈ lη. As the lines in X through
p0 are parameterised by Σ, this is the case if and only if lη = 〈R, p0〉 for some R ∈ Σ, that is, if
R ∈ s(P,Q) ∩ Σ. But this means, according to Bézout’s Theorem, cf. [Sha13a, 4, section 2.1],
that s(P,Q) ⊂ Σ2, as the intersection s(P,Q) ∩ Σ2 contains, counted with multiplicity, three
points. The intersection s(P,Q) ∩ Σ3 consists of the points P,Q and a third point R, since if
a line would be contained in Σ, the cubic threefold X would have an at least one-dimensional
singular locus. Consequently, lη defines a singular point of F (X) if and only if s(P,Q) is a line
of a ruling of Σ2.

We can also construct a rational inverse ψ : F (X) 99K Sym2(Σ) to ϕ geometrically. If
l ⊂ X is any line not passing through p0, we can form the plane E(l) = 〈l, p0〉 ∼= P2. The
intersection E∩X again defines a plane cubic and this cubic contains the line l by construction.
The residual component of E ∩ X is a conic section and since p0 is a singular point of this
conic section, it decomposes as the union of two lines L,L′. Each of these lines is contained
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2 Tail reduction for transverse curve singularities

in X and passing through p0. Therefore, L,L′ determine points P, P ′ ∈ Σ and we may define
ψ(l) = P + P ′ ∈ Sym2(Σ). It is simple to check that the constructions of ϕ and ψ reverse each
other.

2.24 Lemma. Let X be a cubic threefold with a unique singular point p0 of type A1 or A2.
Then, ϕ : Sym2(Σ)→ F (X), as constructed above, is the normalisation.

Proof. A detailed treatment of the case of a cubic threefold X with unique singular point of
type A1 is given by G. van der Geer and A. Kouvidakis in [vK10], although they do not give
an explicit proof of ϕ being a morphism. We prove finiteness of ϕ in Lemma 2.25 below and
postpone the proof that ϕ is a morphism until chapter three where we generalise the construction
of ϕ to cubic threefolds with a unique singular point of type Ak for arbitrary k.

2.25 Lemma. Let X be a cubic threefold with a unique singular point p0 of type A1 or A2 and
let ϕ : Sym2(Σ) → F (X) be the normalisation as constructed above. If (X, p0) is of type A1,
then ϕ−1(Σ) = Σ1 ∪Σ2, where Σ1,Σ2 are disjoint curves both being isomorphic to Σ. If (X, p0)
is of type A2, ϕ−1(Σ) is a single curve isomorphic to Σ.

Proof. We begin with the case of a cubic threefold with a unique singular point of type A1. Σ2

is then a smooth quadric surface and admits two different rulings, cf. Example 1.2. For i = 1, 2
consider the maps

ιi : Σ→ Sym2(Σ), R 7→ P +Q,

where P,Q are such that the unique line of the i-th ruling of Σ2 passing through R intersects
Σ3 in R and the residual points P,Q. We claim that for i = 1, 2, the map ιi is an embedding.
Recall that Σ ⊂ H, where H ∼= P3 is the hyperplane {z0 = 0} ⊂ P4 and parameterises the
lines in P4 passing through p0 via the morphism Φ, see (1.5). The map ϕ |img(ιi) ◦ιi is the
isomorphism Φ : H → Φ(H) restricted to Σ,

ϕ |img(ιi) ◦ιi = Φ |Σ, (2.9)

thus an isomorphism onto its image, the singular locus of F (X). Therefore, dιi is injective and
ιi a closed immersion, that is, an embedding of Σ into Sym2(Σ), and we write Σi for the image
of Σ under ιi. The curves Σ1 and Σ2 are disjoint as a point of intersection gives rise to a line
being an element of both rulings of Σ2 at the same time by going through the construction
above. But such a line does not exist, cf. Example 1.2. It is clear that ϕ−1(Σ) = Σ1 ∪ Σ2 as
points P +Q ∈ Σ1 ∪Σ2 ⊂ Sym2(Σ) are the only points such that the respective secant s(P,Q)
defines an element of one of the rulings of Σ2.

If the unique singular point of X is of type A2, the same construction applies but with
the difference that the two curves Σ1,Σ2 are no longer distinct. This is, because Σ2 in this
case is a quadric of corank one and admits a unique ruling giving rise to a single embedding
ι : Σ→ Sym2(Σ).

We need the following Proposition 2.26 – Lemma 2.28 to compute the degenerate Picard
scheme of F (X).

2.26 Proposition ([vK10, Lemma 3.1]). If C is a smooth curve, then

Pic0(Sym2(C)) ∼= Pic0(C).

Proof. We recall the proof from [vK10, Lemma 3.1] for completeness. For every p ∈ C define a
divisor Cp on Sym2(C) by

Cp = {p+ q | q ∈ C},
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2.4 Tail reduction for transverse curve singularities

and consider the inclusion jp : C → Sym2(C), q 7→ p+ q. The divisor Cp then is the image of C
under the inclusion jp. Now, given any divisor D =

∑
aipi on C, we can associate the divisor

CD =
∑
aiCpi on Sym2(C) to it and this defines an inclusion

i : Pic0(C) ↪→ Pic0(Sym2(C)), OC(D) 7→ OSym2(C)(CD). (2.10)

It is straightforward to check that this inclusion is a morphism of Abelian groups. We claim
that each of the maps j∗p : Pic0(Sym2(C))→ Pic0(C) is an inverse for i. First note that j∗p ◦ i =

idPic0(C) showing that i is indeed injective. To prove surjectivity, recall that Pic0(Sym2(C)) ∼=
H1(Sym2(C),OSym2(C))/H

1(Sym2(C),Z). As i is linear, it defines an isomorphism if we can

show that H1(Sym2(C),OSym2(C)) and H1(C,OC) have the same dimension. The dimension of

H1(C,OC) equals the genus g = g(C) of C by Serre-dualtiy. On the other hand, the cohomology
of the symmetric square of a smooth curve has been computed by I. G. Macdonald and it
follows from [Mac62, Formula 11.1] that dimH1(Sym2(C),OSym2(C)) =

(
g
1

)
= g proving the

assertion.

2.27 Lemma. Let C1, C2 be smooth compact curves. Then,

Pic0(C1 × C2) ∼= Pic0(C1)× Pic0(C2).

Proof. According to [Smi05, Theorem 3.3.12, page 40],

Pic(C1 × C2) ∼= Pic(C1)× Pic(C2)×Hom(Jac(C1), Jac(C2))

as Abelian groups. Now, since Hom(Jac(C1), Jac(C2)) ∼= Zm for some m ∈ N0, see [BL04,
Proposition 1.2.2], which is a discrete group, the assertion follows.

2.28 Lemma. Let p : T →M be a locally trivial algebraic fibre bundle over a smooth curve M
with fibres isomorphic to a smooth curve F . Then,

Pic0(T ) ∼= Pic0(M)× Pic0(F ).

Proof. Let U be a Zariski-open set in M such that p−1(U) ∼= U × F . Since U is open, this
induces a birational map f : T 99K M × F . Consider a resolution of indeterminancies of f , cf.
[Sha13a, 4, Theorem 4.9], that is, a smooth surface S and birational morphisms α : S → T ,
β : S →M × F such that the diagram

S
α

##

β

��
T

f //M × F

commutes. Since both of α, β factor as a composition of blowups of smooth points, there are
integers m,n such that

Pic(T )⊕ Z⊕m ∼= Pic(S) ∼= Pic(M × F )⊕ Z⊕n.

Together with Lemma 2.27 this yields the assertion.

2.29 Theorem. Let X be a cubic threefold with a unique singular point of type A1. Let π :
F→ B be a smoothing of F0 = F (X) and denote by π′ : F′ → B′ the tail reduction of the family
π : F → B. Then, the degenerate Picard scheme of F0 with respect to the family π : F → B is
uniquely determined by Pic0(F′0) which has the form

1 −→ C∗ → Pic0(F′0) −→ Pic0(Σ) −→ 0,

where Σ denotes the singular locus of F0.
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2 Tail reduction for transverse curve singularities

Proof. It follows from Theorem 2.22 and Lemma 2.24 that the dual graph of the tail reduction
π′ : F′ → B′ of the family π : F→ B is given by

E1 Sym2(Σ),
1 1

wherein Σ denotes the singular locus of F0 and E1 is the total space of a locally trivial algebraic
fibre bundle over Σ with fibre P1. Using Corollary 2.15 there is an exact sequence

1 −→ C∗ −→ Pic0(F′0) −→ Pic0(Sym2(Σ))×Pic0(Sym2(Σ)∩E1) Pic0(E1) −→ 0.

By Lemma 2.28, Pic0(E1) can be identified with Pic0(Σ). Moreover, the intersection Sym2(Σ)∩
E1 = Σ1 ∪ Σ2 by Lemma 2.25, where Σ1,Σ2 are disjoint curves isomorphic to Σ. We may thus
identify the fibre product in the exact sequence above with

Pic0(Sym2(Σ))×Pic0(Σ1∪Σ2) Pic0(Σ) = {L ∈ Pic0(Sym2(Σ)) | L |Σ1= L |Σ2}.

Here, by L |Σi we mean ι∗iL, where ιi : Σ→ Sym2(Σ) denotes the inclusion. By [vK10, Remark
6.2], L |Σ1= L |Σ2 holds for all L ∈ Pic0(Sym2(Σ)). Therefore, the fibre product in the above can
be identified with Pic0(Sym2(Σ)) and together with the identification Pic0(Sym2(Σ)) ∼= Pic0(Σ)
from Proposition 2.26 this gives the exact sequence we asserted. The same arguments as in
section 2.3 show that this determines the degenerate Picard scheme of F0 with respect to the
family π : F→ B.

2.30 Remark. In [vK10], G. van der Geer and A. Kouvidakis proved the same result using dif-
ferent methods. In fact, they are even able to identify the degenerate Picard scheme lim

b→0
Pic0(Fb)

with Pic0(F0).

2.31 Remark. In the exact sequence

1 −→ C∗ −→ Pic0(F′0) −→ Pic0(Sym2(Σ)) −→ 0

from Theorem 2.29, the fibre over any point L ∈ Pic0(Sym2(Σ)) consists of the group of
isomorphisms µ : L |Σ1→ L |Σ2 . Every such isomorphism is a nowhere vanishing global
section Σ → Hom(L |Σ1 , L |Σ2) of the Hom-bundle Hom(L |Σ1 , L |Σ2) → Σ. The bundle
Hom(L |Σ1 , L |Σ2) → Σ thus is a line bundle with nowhere vanishing global section and there-
fore trivial.2 If s : Σ → Σ × C, σ 7→ (σ, sσ) is any such section, the map σ 7→ sσ is a regular
map from a projective curve, hence constant. Thus, sσ does not vary with σ and depends on
s only. In particular, we find one global section for each complex number and the nowhere
vanishing global sections correspond to sections s such that sσ ∈ C∗. This gives an alternative
explanation of the C∗ on the left in the exact sequence above.

2.32 Theorem. Let X be a cubic threefold with a unique singular point of type A2. Let π :
F→ B be a smoothing of F0 = F (X) and π′ : F′ → B′ its tail reduction. Then,

Pic0(F′0) ∼= Pic0(Σ)× E,

where E is an elliptic curve and Σ denotes the singular locus of F0. Moreover, this completely
determines the degenerate Picard scheme of F0 with respect to the family π : F→ B.

2In lack of an adequate reference, we give here a sketch of proof. Let s be a nowhere vanishing section of a
line bundle L → M over a smooth manifold M . Define F : M × C → L via F (m, c) = cs(x). This gives
the desired isomorphism M × C → L. Conversely, if an isomorphism F : M × C → L is given, we obtain a
nowhere vanishing global section s by defining s(m) = F (m, c) where c is any non-zero element of C.
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2.4 Tail reduction for transverse curve singularities

Proof. It follows from Theorem 2.22 and Lemma 2.24 that the dual graph of the tail reduction
π′ : F′ → B′ of the family π : F→ B is given by

E1
1

E2
1

M

E2

Sym2(Σ)

1

1

1

1

1

where Σ denotes the singular locus of F0, E1
1 , E

2
1 , E2 are total spaces of P1-bundles over Σ and

M is the total space of a bundle over Σ whose fibres are elliptic curves. Let E ∈ {E1
1 , E

2
1 , E2}

and let K(E) such that F′0 = K(E) ∪ E. Then, using Lemma 2.14 and Lemma 2.28,

Pic0(F′0) = Pic0(E)×Pic0(E∩K(E)) Pic0(K(E))

= Pic0(Σ)×Pic0(Σ) Pic0(K(E))

= Pic0(Σ ∪Σ K(E))

= Pic0(K(E)),

showing that the components E1
1 , E

2
1 , E2 of F′0 do not contribute to the Picard scheme Pic0(F′0).

We may thus, using 2.14 and Lemma 2.26, compute

Pic0(F′0) = Pic0(M ∪ Sym2(Σ))

= (Pic0(E)× Pic0(Σ))×Pic0(Σ) Pic0(Sym2(Σ))

= Pic0(E)× (Pic0(Σ)×Pic0(Σ) Pic0(Sym2(Σ))

= E × Pic0(Σ).

The same arguments as in section 2.3 show that this determines the degenerate Picard scheme
of F0 with respect to the family π : F→ B.
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3 Degenerations of the Picard scheme of the
Fano scheme of lines on a cubic threefold

As we saw in the previous chapter, a tail reduction can be computed for varieties with curve
singularities transversally along a smooth singular locus. Unfortunately, if X is a cubic threefold
with a unique singular point of type Ak and k ≥ 3, its Fano scheme of lines F (X) has singular
locus which is itself singular, see Lemma 1.5.

Our strategy to bypass this problem is the following: we begin by generalising the construction
of a morphism ϕ : Sym2(Σ) → F (X) from the previous chapter by proving that for cubic
hypersurfaces with a unique singular point of ADE-type there always exists a morphism ϕ :
Hilb2(Σ)→ F (X) and that this morphism is the blowup of F (X) along Σ, a fact that seems to
be interesting on its own. We proceed by showing that there is a desingularisation of Hilb2(Σ)
by successive blowups of the singular locus and compute such a resolution explicitly.

This explicit resolution of F (X) then finally enables us to compute the degenerate Picard
scheme of F (X) in general.

3.1 The natural map ϕ : Hilb2(Σ)→ F (X)

We generalise the construction of a morphism ϕ : Sym2(Σ)→ F (X) for X with unique singular
point of type A1 or A2 from the previous chapter, cf. Lemma 2.24 and Lemma 2.25, to cubic
threefolds with a unique singular point of type Ak for arbitrary k ∈ N. It in fact turns out that
for any singular cubic hypersurface X ⊂ Pn not containing a plane, we find a natural morphism
ϕ : Hilb2(Σ)→ F (X) which is the blowup of F (X) along its singular locus.

Throughout this section we assume that the unique singular point p0 of X is of type Ak with
k ≥ 2 unless explicitly stated otherwise.

3.1.1 Geometric construction

We begin by defining the map ϕ : Hilb2(Σ)→ F (X) geometrically. Recall that after making p0

the point with coordinates (1 : 0 : 0 : 0 : 0), we denoted by H ∼= P3 the hyperplane {z0 = 0} in
the ambient P4 of X and by π0 : P4 99K H the projection from the point p0, cf. chapter one.
Consider the map

〈·〉 : Hilb2(H)→ Gr(1, H), η 7→ 〈η〉, (3.1)

sending a length two subscheme of H to the line spanned by it. Denote by α the restriction of
this map to the subscheme Hilb2(Σ) ⊂ Hilb2(H), i.e. α = 〈·〉 |Hilb2(Σ). Since for η ∈ Hilb2(Σ),
each point of the support of η corresponds to a line in X through p0, if we form the plane

Eη = 〈α(η), p0〉 ∼= P2,
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

it contains the lines 〈x, p0〉 for all points x ∈ supp(η). That is, Eη contains the cone over supp(η)
with vertex p0. These are two distinct lines, if the support of η consists of two points, and is
the same line taken twice, if it consists of a single point only. The intersection Eη ∩X is a plane
cubic containing two lines (or a double line), and therefore also a third line lη ⊂ X. This gives
rise to a map

ϕ : Hilb2(Σ)→ F (X), η 7→ lη. (3.2)

3.1 Remark. If π0 : P4 99K H denotes the projection from the point p0 and η ∈ Hilb2(Σ) is
such that p0 /∈ lη, then π0(lη) = α(η).

It is simple to check whether lη for given η ∈ Hilb2(Σ) defines a smooth or singular point of
F (X): as every line in X through p0 intersects Σ in precisely one point, lη ∈ F (X)sing if and
only if lη ∩ Σ 6= ∅. This condition can be rephrased as α(η) ⊂ Σ2 by Bézout’s Theorem and is
equivalent to saying that α(η) is a line of the ruling of Σ2.

We can also construct an inverse ψ : F (X) 99K Hilb2(Σ) to ϕ geometrically as follows. If
l ∈ F (X)reg is any line in X not passing through p0, we may form the plane

E(l) = 〈l, p0〉 ∼= P2.

The intersection E(l) ∩X is a plane cubic and contains the line l. It therefore decomposes as
E(l)∩X = l∪C where C is a conic section with singular point p0. But this means that C is the
union of two (not necessarily distinct) lines passing through p0. As each of them determines a
point on Σ, the intersection E(l) ∩X determines a length two subscheme of Σ. Thus,

ψ : F (X) 99K Hilb2(Σ), l 7→ E(l) ∩ Σ (3.3)

defines on F (X)reg an inverse to ϕ by construction. The following lemma provides a detailed
description of the locus S = ϕ−1(Σ) ⊂ Hilb2(Σ), that is, it provides a precise description of
which length two subschemes of Σ give rise to lines passing through the point p0 by means of
the construction above.

3.2 Lemma. The set

S = {η ∈ Hilb2(Σ) | α(η) ⊂ Σ2} = ϕ−1(Σ)

has two irreducible components S1, S2, where

S1 =Hilb2(Σ)sing,

S2 ={η ∈ Hilb2(Σ) | q0 /∈ supp(η), q0 ∈ α(η)},

and q0 ∈ Σ is the singular point. Moreover, S1
∼= Σ̃, where Σ̃ denotes the blowup of Σ at its

singular point q0; and S2
∼= P1. The intersection S1∩S2 consists of two points if the singularity

type of (Σ, q0) is A1 and of a single point otherwise.

Proof. As we are going to show independently in Lemma 3.21, the singular locus of Hilb2(Σ) is

Hilb2(Σ)sing = {η ∈ Hilb2(Σ) | q0 ∈ supp(η)}

and isomorphic to Σ̃, the blowup of Σ at its singular point q0. We divide the proof into the
following steps. First, we show that ϕ(S1 ∪ S2) ⊂ Σ. For proving the inclusion ϕ−1(Σ) ⊂ S1∪S2

we separately prove the inclusions ϕ−1(Σreg) ⊂ S1 and ϕ−1(l0) ⊂ S2. Here, l0 denotes the
singular point of the singular locus of F (X).

In order to show that ϕ(S1 ∪ S2) ⊂ Σ, we distinguish the cases η ∈ S1 ∩ S2, η ∈ S1 \ S2 and
η ∈ S2 \ S1. First, let η ∈ S1 ∩ S2. Then η is a length two subscheme with supp(η) = {q0},
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as follows from the construction below. Each length two subscheme of Σ supported at a single
point corresponds to this point together with a tangent direction. It follows from the discussion
below that η defines an element of the projectivised tangent cone to Σ at q0. But since

α(η) ⊂ P(TCq0Σ) = P(TCq0Σ2) ∩ P(TCq0Σ3)

and P(TCq0Σ2) ∼= Σ2, we conclude α(η) ⊂ Σ2. Let now η ∈ S2 \ S1, that is, q0 /∈ supp(η).
The line α(η) is secant to Σ and passes through the singular point q0 of Σ2. The intersection
multiplicity at this point is at least two, as q0 is a double point of Σ2. Furthermore, α(η)
intersects Σ2 in the residual point p of supp(η) \ {q0} also. Since the intersection multiplicity
of α(η) with Σ2 is thus at least three, it has to be contained in the quadric Σ2 by Bézout’s
Theorem.
For η ∈ S1 \ S2, the line α(η) is a line intersecting the quadric Σ2 in the points of supp(η) and
also in q0, thus has to be contained in Σ2 by the same argument.

It remains to show that ϕ−1(Σ) ⊂ S = S1 ∪S2. To do so, we make the following construction
of a rational map ι : Σ 99K Hilb2(Σ): if p 6= q0 is any point on Σ, there is a unique line l = l(p)
of the ruling of Σ2 such that p ∈ l. The intersection l ∩ Σ3 defines a subscheme η = ι(p) of Σ
of length two after removing the point p. If supp(ι(p)) = {q0}, the line l = l(p) intersects Σ3

twice at q0. Since Σ3 is smooth at q0, this means that l is a projectivised tangent line to Σ3 at
q0. Moreover, the projectivised tangent cone to Σ2 at q0 is Σ2 with the lines of the ruling being
the tangent lines. Therefore, ι(p) corresponds to q0 together with a line in the tangent cone to
Σ at q0. We used this in the above. From the explicit construction of ι and ϕ, it is simple to
check that (ϕ ◦ ι)(p) = 〈p, p0〉 ∈ F (X)sing \ {l0} and thus,

ϕ−1(〈p, p0〉) = ι(p) ∈ S1.

We are left to show that ϕ−1(l0) ⊂ S2 and S2
∼= P1. Let η ∈ Hilb2(Σ) such that q0 /∈ supp(η)

but α(η) ⊂ Σ2. Consider the projection π′0 : H 99K P2 from the point q0. Since Σ2 is a cone
over a smooth plane quadric and we are projecting from the vertex of the cone, the image of Σ2

under this projection is a smooth plane quadric, the basis of the cone Σ2. If supp(η) = {p, q}
with p, q not necessarily distinct, they define a point on the smooth plane quadric since they
lie on a line passing through q0. On the other hand, every point p on this quadric determines
a line of the ruling of Σ2 (via p 7→ 〈p, q0〉) and this line intersects Σ3 in three points counted
with multiplicity, one of them being q0. If one of the other two points is also q0, the line of the
ruling is the geometric tangent to Σ at q0 and in the intersection of S1 with S2. Otherwise, it
is a point of S2. By construction, ϕ−1(l0) ⊂ S2, and S2

∼= P1 follows since every smooth plane
quadric is isomorphic to P1 via the second Veronese embedding.

3.1.2 Interpretation as blowup morphism

3.3 Remark. Consider the rational map π0 |X : X 99K H given by projecting from the singular
point p0 = (1 : 0 : 0 : 0 : 0) ∈ X onto the hyperplane H = {z0 = 0} ∼= P3. This map is not
only rational but birational as we have a rational inverse ρ : H 99K X defined by mapping each
point p ∈ H to the residual point of the intersection 〈p, p0〉 ∩ X after removing the point p0

with multiplicity two. To be more precise, we consider the intersection with multiplicity, i.e.

〈p, p0〉 ∩X =
∑

x∈〈p,p0〉∩X

multx(〈p, p0〉 ∩X) · x ∈ Sym3(X)

and define

ρ(p) =
∑

x∈〈p,p0〉∩X

multx(〈p, p0〉 ∩X) · x− 2p0 ∈ X.
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

We then have a commutative diagram, cf. Lemma 1.5,

X

π0|X
		

Blp0X
oo

H

ρ

HH

BlΣH.oo

We are going to need a coordinate description for ρ. Let x = (0 : x1 : x2 : x3 : x4) ∈ P4 be any
point of H. The line L joining x and p0 is

L = {(γ : x1 : x2 : x3 : x4) | γ ∈ C} ∪ {p0} ⊂ P4.

A point on L is a point of X, if it is either the point p0, or if

γf2(x1 : x2 : x3 : x4) + f3(x1 : x2 : x3 : x4) = 0. (3.4)

We easily see that the entire line is contained in X and passes through p0, if f2(x) = f3(x) = 0.
This reflects the fact that Σ parametrises the lines in X passing through p0. If f2 and f3 do
not vanish simultaneously at x, (3.4) can be solved for γ, yielding

γ = γ(x1 : x2 : x3 : x4) = −f3(x1 : x2 : x3 : x4)

f2(x1 : x2 : x3 : x4)
, f2(x) 6= 0, (3.5)

and the desired coordinate description for ρ therefore is

ρ(x1 : x2 : x3 : x4) =

{
(γ(x1 : x2 : x3 : x4) : x1 : x2 : x3 : x4), f2(x) 6= 0,

(1 : 0 : 0 : 0 : 0), f2(x) = 0, f3(x) 6= 0.
(3.6)

Note that we identified (∞ : x1 : x2 : x3 : x4) with (1 : 0 : 0 : 0 : 0) in (3.6) which is justified by
the fact that for f2(x) = 0 and f3(x) 6= 0,

L ∩X =({(γ : x1 : · · · : x4) | γ ∈ C} ∪ {p0}) ∩X
=({(γ : x1 : · · · : x4) | γ ∈ C} ∩X) ∪ {p0}
={γ ∈ C | γf2(x) + f3(x) = 0} ∪ {p0}
={p0}.

In particular, this shows in coordinates that ρ is continuous and a morphism away from Σ.

3.4 Remark. ρ(α(η) \ Σ) = ϕ(η) holds for all η ∈ Hilb2(Σ) \ (S1 ∪ S2), analogous to Remark
3.1.

3.5 Theorem. Let X ⊂ P4 be a cubic threefold with a unique singular point of type Ak. Denote
by Σ = Σ2 ∩ Σ3 the associated complete intersection isomorphic to the singular locus of F (X).
Then there exists a natural map ϕ : Hilb2(Σ) → F (X) that coincides with the blowup of F (X)
along Σ.

Proof. Consider the rational map

Hilb2((Σ3)reg) 99K (Σ3)reg, η 7→
∑

x∈α(η)∩Σ3

multx(α(η) ∩ Σ3) · x−
∑

x∈supp(η)

multx(η) · x

associating to every length two subscheme η of the regular locus of Σ3 the residual point of
intersection with Σ3 of the line defined by η after removing the points of the support of η. The
exceptional locus of this map is the set of all η such that the line defined by η is entirely contained
in Σ3. Recall from Lemma 1.6 that Σ ⊂ (Σ3)reg. We may therefore restrict the map above to
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the subscheme Hilb2(Σ) of Hilb2((Σ3)reg) to obtain a rational map β : Hilb2(Σ) 99K Σ3. Since
no line is contained in Σ, this map is everywhere defined, i.e. a morphism β : Hilb2(Σ) → Σ3.
Let U = {(l, p) | p ∈ l} ⊂ Gr(1, H) × H be the universal line over Gr(1, H). We then have a
morphism

ε : Hilb2(Σ)→ U , η 7→ (α(η), β(η)). (3.7)

Note that a point (l, p) ∈ U is a point of img(ε), if

i) p ∈ Σ3,

ii) for all q ∈ l ∩ Σ3, q 6= p we have q ∈ Σ2,

and that ε is an isomorphism onto its image, since on img(ε) we have an inverse morphism
img(ε)→ Hilb2(Σ) given by (p, l) 7→ l∩Σ3− p. We aim to give a morphism σ : img(ε)→ F (X)
such that ϕ = σ ◦ ε together with a coordinate description of σ.

In order to choose coordinates on a neighbourhood of l = l(0, 0) ∈ Gr(1, H), we may pick
two distinct points x(0), y(0) on l and map them to the points x(0) = (1 : 0 : 0 : 0) ∈ H
and y(0) = (0 : 1 : 0 : 0) ∈ H using a linear coordinate change on H. A neighbourhood of
l in Gr(1, H) is then given by all lines l = l(u, v) spanned by x(u) = (1 : 0 : u3 : u4) and
y(v) = (0 : 1 : y3 : y4), cf. chapter one. To obtain a neighbourhood of (l, p) inside img(ε), we
can assume without loss of generality that p = y(v), that is, that one of the points we chose
to generate l is the point p itself. Consequently, any point in a neighbourhood of (l, p) inside
img(ε) can be written as ((0 : 1 : v3 : v4), (u3, u4, v3, v4)) ∈ H ×Gr(1, H).

To define the map σ, we distinguish two cases. First, assume that y(v) = (0 : 1 : v3 : v4) ∈
Σ3\Σ2, that is, the point ((0 : 1 : v3 : v4), (u3, u4, v3, v4)) is a point of ε(Hilb2(Σ)\(S1∪S2)). As
the line given by (u3, u4, v3, v4) is not contained in Σ2, we may assume that (1 : 0 : u3 : u4) /∈ Σ2.
To obtain the desired factorisation ϕ = σ ◦ ε, the point ((0 : 1 : v3 : v4), (u3, u4, v3, v4)) should
be mapped to the line spanned by ρ(x(u)) and ρ(y(v)), cf. Remark 3.4. Following Remark 3.3
we compute

ρ(x(u)) = ρ(1 : 0 : u3 : u4) = (γ(x(u)) : 1 : 0 : u3 : u4) ∈ P4,

ρ(y(v)) = ρ(0 : 1 : v3 : v4) = (0 : 0 : 1 : v3 : v4) ∈ P4,

where we used that γ(y(v)) = 0 for y(v) ∈ Σ3. We therefore define

σ :

{
ε(Hilb2(Σ) \ (S1 ∪ S2))→ F (X),

((0 : 1 : v3 : v4), (u3, u4, v3, v4)) 7→ (γ(x(u)), u3, u4, 0, v3, v4),
(3.8)

where the point on the right is to be understood as point in local coordinates on Gr(1,P4).
If y(v) = (0 : 1 : v3 : v4) ∈ Σ2 ∩ Σ3 = Σ, it corresponds to a point of ε(S1 ∪ S2). For the point
x(u) we necessarily have x(u) ∈ Σ2 but we can assume that x(u) /∈ Σ3. We then define

σ :

{
ε(S1 ∪ S2)→ F (X),

((0 : 1 : v3 : v4), (u3, u4, v3, v4)) 7→ (0, 0, 0, 0, v3, v4),
(3.9)

that is, we map the point ((0 : 1 : v3 : v4), (u3, u4, v3, v4)) to the line spanned by ρ(x(u)) = p0

and y(v). By (3.6), respectively the continuity of ρ, σ is easily seen to be continuous. The
desired factorisation ϕ = σ ◦ ε now holds by construction.

To complete the proof, it remains to show that Hilb2(Σ) is isomorphic to F̃ (X), the blowup
of F (X) along Σ. Let Φ : H → Gr(1,P4) be the map p 7→ 〈p, p0〉 realising H as Schubert variety
of all lines in P4 passing through p0, see (1.5). The blowup BlΦ(H)Gr(1,P4) replaces each point
L ∈ Φ(H) by a P2 parameterising the lines in H ∼= P3 passing through p, where {p} = L ∩H.
These lines are also parameterised by the image of the projection πp : H ∼= P3 99K P2 from the
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

point p in a natural way, cf. our discussion in chapter one. Therefore, the fibre EL = bl−1
Φ(H)(L)

of the exceptional bundle over Φ(H) is naturally isomorphic to the image of πL∩H ,

EL = bl−1
Φ(H)(L) ∼= img(πL∩H). (3.10)

Thus, if we are given a point ((0 : 1 : v3 : v4), (u3, u4, v3, v4)) ∈ ε(S1 ∪ S2), we can extend the

map σ to a map σ̄ : img(ε)→ F̃ (X) by

σ̄ :

{
ε(S1 ∪ S2)→ F̃ (X),

((0 : 1 : v3 : v4), (u3, u4, v3, v4)) = (0, 0, 0, 0, v3, v4)× πy(v)(x(u)).
(3.11)

Note that in our special choice of coordinates, πy(v)(x(u)) is the projection onto the hyperplane
{z1 = 0} ⊂ H and πy(v)(x(u)) = x(u), thus

σ̄ |ε(S1∪S2) ((0 : 1 : v3 : v4), (u3, u4, v3, v4)) = (0, 0, 0, 0, v3, v4)× (1 : u3 : u4) (3.12)

and the assertion follows.

3.6 Remark. The assumption of Theorem 3.5 that X is a cubic threefold is not necessary. The
precise same arguments can be used to prove the theorem for arbitrary cubic hypersurfaces not
containing a plane and with unique singular point of type Ak. We state this as Corollary 3.8.

3.7 Remark. It is interesting to compare Theorem 3.5 with earlier results of A. Beauville and
R. Donagi [BD85] and B. Hassett [Has00b] stating that for some smooth cubic fourfolds X ⊂ P5

one is able to find a K3-surface S and an isomorphism Hilb2(S) ∼= F (X). In fact, a smooth
complete (2, 3)-intersection in P4 such as the curve Σ appearing in Theorem 3.5 is a K3-surface.
Unfortunately, the construction of the surface S and the isomorphism Hilb2(S) ∼= F (X) in
[BD85, Has00b] is purely Hodge-theoretic and it is not clear how this relates to the explicit
geometric construction of the map ϕ : Hilb2(Σ)→ F (X) provided above.

3.8 Corollary. Let X ⊂ Pn be a cubic hypersurface with a unique singular point of type Ak
and not containing a plane. Denote by Σ the associated complete intersection isomorphic to the
singular locus of F (X). Then there exists a natural map ϕ : Hilb2(Σ) → F (X) that coincides
with the blowup of F (X) along Σ.

3.2 Hilbert square of singular curves

In order to perform the tail reduction procedure, we need to compute a resolution of F (X)
explicitly. As we have seen in the previous section, the blowup of the entire singular locus
of F (X) results in Hilb2(Σ) where Σ is the associated complete intersection, cf. Theorem 3.5.
Since we know already that successive blowups of the transversality locus, that is, of the singular
locus of Hilb2(Σ) without the singular point of the singular locus, resolve the transversal curve
singularity, it is natural to ask if successive blowups of the entire singular locus of Hilb2(Σ) and
then of its strict transforms resolve the singularities of Hilb2(Σ) and therefore of F (X). This is
proven in the current section. Since we have to work with local equations for Hilb2(Σ) in order
to compute the resolution explicitly, we begin by calculating local equations for Sym2(Σ).
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3.2 Hilbert square of singular curves

3.2.1 Symmetric square of singular curves

Let Y be a curve with a unique singular point y0 of type Ak. Denote by π : Ỹ → Y the blowup
of Y in the singular point y0. The blown up curve Ỹ is smooth, if k = 1, 2, or has a unique
singular point ỹ0 of type Ak−2, see Table 2.1 and also the local calculations from the proof of
Lemma 2.9.

3.9 Lemma. Let π̄ : BlSing(Y×Y )(Y × Y ) → Y × Y be the blowup of the entire singular locus
and let p ∈ π̄−1(y0, y0). Then, there exists an isomorphism of analytic germs

(Ỹ × Ỹ , (ỹ0, ỹ0)) ∼= (BlSing(Y×Y )(Y × Y ), p),

where ỹ0 ∈ π−1(y0).

Proof. Take a local analytic normal form Y ∼= {xk+1
1 + x2

2 = 0} ⊂ C2 which is singular at the
point y0 = (0, 0). It is simple to check using the Jacobian criterion that the product

Y × Y = {(x1, x2, y1, y2) ∈ C4 | xk+1
1 + x2

2 = yk+1
1 + y2

2 = 0}

is singular along (Y × {y0}) ∪ ({y0} × Y ). The subvariety Y × {y0} is given by the ideal
I = 〈xk+1

1 +x2
2, y1, y2〉, the subvariety {y0}×Y by the ideal J = 〈x1, x2, y

k+1
1 +y2

2〉. Consequently,
Sing(Y × Y ) is given by the ideal

I ∩ J = 〈x1y1, x1y2, x2y1, x2y2, x
k+1
1 + x2

2, y
k+1
1 + y2

2〉 = 〈f0, . . . , f5〉. (3.13)

Consider the blowup of C4 along the subvariety C = {x1y1 = x1y2 = x2y1 = x2y2 = 0} of
C2 × C2 that restricts to the singular locus of Y × Y . Then,

BlCC4 = {(x1, x2, y1, y2)× (a0 : · · · : a3) ∈ C4 × P3 | aifj = ajfi, i, j ∈ {0, . . . , 3}}.

Take the chart U0 = {a0 6= 0}. In this chart, the total transform of Y ×Y is given by equations

xk+1
1 + x2

2 =0,

yk+1
1 + y2

2 =0,

x1y2 − a1x1y1 =0,

x2y1 − a2x1y1 =0,

x2y2 − a3x1y1 =0,

and the exceptional divisor by {x1y1 = 0}. To obtain equations for the strict transform, we
need to drop all factors corresponding to components of the exceptional divisor. Doing so in
the third and fourth equation enables us to substitute the variables x2, y2 and results in local
equations

x2
1(xk−1

1 + a2
2) =0,

y2
1(yk−1

1 + a2
1) =0,

a1a2 − a3 =0.

(3.14)

There are more factors corresponding to the exceptional divisor in the equations. By removing
them we obtain the following local equations for the strict transform after substituting the
variable a3:

xk−1
1 + a2

2 =0,

yk−1
1 + a2

1 =0.

These are local equations for Ỹ × Ỹ around the point (ỹ0, ỹ0).
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3.10 Lemma. The blowup b : C̃2 × C2 → C2×C2 of C2×C2 along the ideal defining the union

({y0} ×C2) ∪ (C2 × {y0}) is isomorphic to the self-product of the blowup b0 : C̃2 → C2 of C2 in
the point y0. In other words, there is a commutative diagram

C̃2 × C2

b
��

C̃2 × C̃2 b0×b0 //

∼=
66

C2 × C2.

In particular, the total transform of Y × Y via b is isomorphic to the self-product of the total
transform of Y via b0.

Proof. We begin by checking that all coordinate charts are isomorphic and that these isomor-
phisms identify the respective blowup maps with each other. Afterwards, we will show that
the transition functions between the respective coordinate charts also get identified under these

isomorphisms. Let us start by computing the coordinate charts for C̃2 × C2 = BlS(C2 × C2) ⊂
C4×P3, where S is such that S ∩ (Y × Y ) = (Y × Y )sing. Denote projective coordinates on the
P3 by (a0 : a1 : a2 : a3) and the respective affine coordinate charts by Ui = {ai 6= 0}. We then
have

(C̃2 × C2) ∩ U0 ={y2 − a1y1 = x2 − a2x1 = a1a2 − a3 = 0} ⊂ C4 × C3,

(C̃2 × C2) ∩ U1 ={y1 − a0y2 = x2 − a3x1 = a3a0 − a2 = 0} ⊂ C4 × C3,

(C̃2 × C2) ∩ U2 ={y2 − a3y1 = x1 − a0x2 = a1 − a0a3 = 0} ⊂ C4 × C3,

(C̃2 × C2) ∩ U3 ={y1 − a2y2 = x1 − a1x2 = a1a2 − a0 = 0} ⊂ C4 × C3.

(3.15)

For C̃2× C̃2 = Bly0(C2)×Bly0(C2) ⊂ C4×P1×P1 denote projective coordinates on P1×P1 by
(b0 : b1), (c0 : c1). The respective coordinate charts then are Ui,j = {bi 6= 0} ∩ {cj 6= 0} and

(C̃2 × C̃2) ∩ U0,0 ={y2 − c1y1 = x2 − b1x1 = 0} ⊂ C4 × C2,

(C̃2 × C̃2) ∩ U0,1 ={y2 − c1y1 = b0x2 − x1 = 0} ⊂ C4 × C2,

(C̃2 × C̃2) ∩ U1,0 ={c0y2 − y1 = x2 − b1x1 = 0} ⊂ C4 × C2,

(C̃2 × C̃2) ∩ U1,1 ={c0y2 − y1 = b0x2 − x1 = 0} ⊂ C4 × C2.

(3.16)

We can regard the equations (3.15) for the local charts as equations in C4 × C2 by taking the
projection from C4 × C3 given by forgetting about the coordinate a3, respectively a2, a1, a0, in

the chart U0, respectively U1, U2, U3. Then, the identification of the local charts for C̃2 × C̃2

with the local charts of C̃2 × C2 is immediately clear as the defining equations are the same up
to relabelling coordinates. It is not hard to check that the restriction of the respective blowup
maps are the same under this identification of the charts. For example, it is simple to see that
blS |U0 : U0 → C2 × C2 becomes the map (bly0 × bly0) |U0,0 : U0,0 → C2 × C2.
The transition functions between the local charts are derived from the standard transition
function for P3 and P1, respectively, and it is not hard to check that they coincide under the
identification of the local charts described above. We omit the explicit computation.

3.11 Remark. If we consider the ambient spaces C4 × P3 of C̃2 × C2 and C4 × P1 × P1 of

C̃2 × C̃2, the proof of Lemma 3.10 also shows that we have a map m : C4 × P1 × P1 → C4 × P3

given by idC4 × s, where

s : P1 × P1 → P3, ((b0 : b1), (c0 : c1)) 7→ (b0c0 : b0c1 : b1c0 : b1c1) = (a0 : a1 : a2 : a3)
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3.2 Hilbert square of singular curves

denotes the Segre-embedding which embeds the product P1×P1 as the quadric {a1a2−a0a3 = 0}
inside P3. The variety C̃2 × C2 now is the image of C̃2 × C̃2 under the embedding m.

3.12 Remark. A more abstract proof of Lemma 3.10 can be found in [Ran16, Remark 2.2].

Lemma 3.10 provides a way to resolve the singularities of a product of curve singularities.
We state this as the following corollary.

3.13 Corollary. Let Z → Y ⊂ C2 be the minimal embedded resolution of Y . Then there exists
an embedded resolution W → Y ×Y of Y ×Y which is given by successive blowups of the entire
singular locus. Moreover, the strict transform of Y under these blowups is isomorphic to Z×Z.

The action of S2 on the ambient C2 × C2 lifts to an action on the blowup C̃2 × C2 and this
in turn extends to the ambient C4 × P3 of the blown up C4. The action there is given by

(x1, x2, y1, y2)× (a0 : a1 : a2 : a3) 7→ (y1, y2, x1, x2)× (a0 : a2 : a1 : a3). (3.17)

That is, we have the usual action of S2 by permutation of the factors on C2 × C2, and are
given an involution on the P3. The quotient of C4 × P3 therefore is Sym2(C2) × P3/i, where
i(a0 : a1 : a2 : a3) = (a0 : a2 : a1 : a3) denotes the involution as obtained in (3.17). If we
consider the map m = idC4 × s : C4 × P1 × P1 → C4 × P3 from Remark 3.11, the action (3.17)
of S2 pulls back via m to an action on C4 × P1 × P1 which is the usual action of S2 given by
permutation of the factors, thus with quotient Sym2(C2) × Sym2(P1) ∼= Sym2(C2) × P2. This
gives rise to a commutative diagram

C2 × C2 × P1 × P1
m=idC4×s //

��

C2 × C2 × P3

��
Sym2(C2)× P2 // Sym2(C2)× P3/i.

(3.18)

The centre of the blowup C̃2 × C2 → C2×C2 is invariant under the action of S2 as is clear from

the coordinate description (3.13). Therefore, the blowup map C̃2 × C2 ⊂ C4 × P3 → C2 × C2

descends to a map ˜Sym2(C2) ⊂ Sym2(C2)×P2 → Sym2(C2) being the blowup along (I∩J)/S2,
in the notation of (3.13), and the ideal (I ∩ J)/S2 is the ideal defining the singular locus of
Sym2(Y ). Lemma 3.9 and Lemma 3.10 now yield Corollaries 3.14 and 3.15 when passing to the
quotient by the action of S2.

3.14 Corollary. Let π̄ : BlSing(Sym2(Y ))Sym2(Y )→ Sym2(Y ) be the blowup of the entire singular

locus and let p ∈ π̄−1(2y0). Then there is an isomorphism of analytic germs

(Sym2(Ỹ ), 2ỹ0) ∼= (BlSing(Sym2(Y ))Sym2(Y ), p),

where ỹ0 ∈ π−1(y0).

3.15 Corollary. The blowup of Sym2(Y ) along its entire singular locus is isomorphic to
Sym2(Ỹ ). In particular, successive blowups of the entire singular locus provide a resolution
W → Sym2(Y ) of singularities of Sym2(Y ).

If W → Sym2(Y ) is the resolution from Corollary 3.15, it follows that W ∼= Sym2(Y ν). In
fact, we have the following lemma saying that the resolution of Sym2(Y ) by successive blowups
of the entire singular locus is the normalisation.

3.16 Lemma. The normalisation of the symmetric square of Y is isomorphic to the symmetric
square of the normalisation of Y ,

Sym2(Y )ν ∼= Sym2(Y ν).
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

Proof. The following proof is due to M. A. van Opstall, [van06, Lemma 4.3], and included here
for completeness. His assumption that the singular point of Y is of type A1 is not necessary
since not used in the proof.

Let νY : Y ν → Y be the normalisation of Y and νY×Y : (Y×Y )ν → Y×Y be the normalisation
of Y ×Y . Since Y ν ×Y ν and (Y ×Y )ν are both normal, there exists, by the universal property
of normalisation, [Sha13a, 2, Theorem 2.1], a unique morphism ϕ such that the diagram

(Y × Y )ν

νY×Y
��

Y ν × Y ν νY ×νY //

ϕ
55

Y × Y

commutes. By Zariski’s Main Theorem , cf. [Har83, Chapter III, Corollary 11.4], the fibres of ϕ
are connected. Since the diagram commutes, every positive dimensional fibre of ϕ would have
to lie in a fibre of νY × νY . But since the latter has zero dimensional fibres, there is no positive
dimensional fibre of ϕ. Moreover, a zero-dimensional fibre can only be connected, if it is a point.
Therefore, ϕ is a homeomorphism and it follows, again from Zariski’s Main Theorem, that ϕ
is an isomorphism. The action of S2 on Y ν × Y ν induces an action of S2 on (Y × Y )ν via ϕ.
Repeating the argument for the quotients of the three spaces by the action of S2 in the diagram
above yields that (Y × Y )ν/S2 → (Y × Y )/S2 is the normalisation and that (Y × Y )ν/S2 is
isomorphic to (Y ν × Y ν)/S2.

3.17 Corollary. Let W → Sym2(Y ) be the resolution obtained by successive blowups of the
entire singular locus. Then, W ∼= Sym2(Y ν).

Proof. We have seen that the blowup of the entire singular locus is a finite map between the
strict transforms. Since the normalisation of Sym2(Y ) is smooth, it is the minimal resolution
and we have a commutative diagram

W

finite

))
contraction

of curves ��
Sym2(Y ν)

finite
// Sym2(Y ).

By commutativity, if there were any curve contracted by the map W → Sym2(Y ν), the map
W → Sym2(Y ) could not be finite. Thus, the map W → Sym2(Y ν) has to be an isomorphism.

The following lemma is needed for the proof of our main result, Theorem 3.34.

3.18 Lemma. Let Y be a curve with a unique singular point y0 of type A2k+1 and let ν : Y ν → Y
be the normalisation. Denote by y1, y2 the points of Y ν such that ν(y1) = ν(y2) = y0 ∈ Y , that
is, the points lying over the singular locus of Y . Then, if Yyi = {p + yi | p ∈ Y ν}, for every
L ∈ Pic0(Sym2(Y ν)) the restrictions L |Yy1 and L |Yy2 are isomorphic.

Proof. For i = 1, 2 denote by jyi : Y ν → Sym2(Y ν), p 7→ p + yi the inclusion of Y ν inside
Sym2(Y ν) with image Yyi . The assertion of the lemma is that for every L ∈ Pic0(Sym2(Y ν)),
there is an isomorphism j∗y1L

∼= j∗y2L. Since Pic0(Sym2(Y ν)) is generated by divisors of the form
Yr − Ys where Yr = {p + r | p ∈ Y ν} and r, s ∈ Y ν , cf. Lemma 2.26 or [vK10, Section 3], it
suffices to show that

j∗y1(Yr − Ys) ∼ j∗y2(Yr − Ys),
where ∼ denotes linear equivalence. But as Yy1 ∩Yr = {r+ yi} we have j∗yiYr = r and therefore,

j∗yi(Yr − Ys) = r − s,

and the assertion follows.
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3.2.2 Local equations for the symmetric square of a singular curve

We compute local equations for Sym2(Y ). Our calculations are similar to those in [Yam17b,
section 2] but are more general and valid in any dimension. We only limit ourselves to the case
of curves for the sake of brevity and readability.

Consider C2 × C2 with local coordinates ((x1, x2), (y1, y2)) and the action of S2 given by
permutation of the factors, that is, the action

(x1, x2, y1, y2) ∼ (y1, y2, x1, x2).

The change of coordinates

ui =
xi + yi

2
, vi =

xi − yi
2

,

turns the action of S2 into an action of Z2 given by

(u1, u2, v1, v2) ∼ (u1, u2,−v1,−v2).

The ring of invariants for this action is generated by

X1 = u1, X2 = u2, X3 = v2
1, X4 = v2

2, X5 = v1v2,

and there is a single relation between these generators which is X3X4 − X2
5 = 0. Translation

back into the coordinates (x1, x2, y1, y2) yields

X1 =
x1 + y1

2
, X2 =

x2 + y2

2
, X3 =

(x1 − y1)2

4
, X4 =

(x2 − y2)2

4
, X5 =

(x1 − y1)(x2 − y2)

4

with the same relation X3X4 −X2
5 = 0 as before. In other words, we find that the coordinate

ring of Sym2(C2) is

C[Sym2(C2)] ∼= C[X1, X2, X3, X4, X5]/〈X3X4 −X2
5 〉

= C
[
x1 + y1

2
,
x2 + y2

2
,
(x1 − y1)2

4
,
(x2 − y2)2

4
,
(x1 − y1)(x2 − y2)

4

]
= C[x1, x2, y1, y2]S2 .

Let Y = {xk+1
1 − x2

2 = 0} ⊂ C2. Then, Y × Y is given by the ideal

〈r1, r2〉 = 〈xk+1
1 − x2

2, y
k+1
1 − y2

2〉 ⊂ C[x1, x2, y1, y2].

To find equations for Sym2(Y ), we need to find the inverse image of this ideal under the map
f : C[X1, . . . , X5]→ C[x1, x2, y1, y2], i.e.

f−1(〈r1, r2〉) = ker(f) + f−1(〈r1, r2〉 ∩ img(f)).

In order to shorten our notation, we will often use the coordinates X1, . . . X5 in our calculations
and view them as functions in x1, x2, y1, y2. When we write a term with a root such as

√
X3,

we mean the function obtained by formally cancelling root and square with each other. For
example, the element

√
X3 means the function

√
X3 =

√
(x1 − y1)2

4
=
x1 − y1

2
∈ C[x1, x2, y1, y2].

We already computed ker(f) = 〈X3X4 −X2
5 〉. The ideal 〈r1, r2〉 ∩ img(f) of img(f) consists of

the S2-invariant elements in the ideal generated by r1, r2 which are easily computed to be

〈r1, r2〉 ∩ img(f) = 〈r1 + r2, (r1 − r2)(x1 − y1), (r1 − r2)(x2 − y2)〉 =: 〈g1, g2, g3〉 ⊂ img(f).
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We thus have to find for each gi an element fi ∈ f−1(gi). We begin with r1 + r2 and r1 − r2.
Since

r1 + r2 = xk+1
1 − x2

2 + yk+1
1 − y2

2

and

f
(

(X1 +
√
X3)k+1

)
=

(
x1 + y1

2
+

√
(x1 − y1)2

4

)k+1

= xk+1
1 ,

f
(

(X1 −
√
X3)k+1

)
=

(
x1 + y1

2
−
√

(x1 − y1)2

4

)k+1

= yk+1
1 ,

f
(
−(X2

2 +X4)
)

= − (x2 + y2)2

4
− (x2 − y2)2

4
= −x

2
2 + y2

2

2
,

we obtain

r1 + r2 = f
(
−2X2

2 − 2X4 + (X1 +
√
X3)k+1 + (X1 −

√
X3)k+1

)
. (3.19)

Note the formula

2

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 Xi
3 = (X1 +

√
X3)k+1 + (X1 −

√
X3)k+1 (3.20)

which allows us to rewrite (3.19) as

r1 + r2 = f

−2X2
2 − 2X4 + 2

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 Xi
3

 . (3.21)

For r1 − r2 = xk+1
1 − x2

2 − y
k+1
1 + y2

2 notice that

f

(
1√
X3

(X2X5)

)
=

(x2 + y2)(x1 − y1)(x2 − y2)

4(x1 − y1)
=
x2

2 − y2
2

4

so that we can write

r1 − r2 = f

(
(X1 +

√
X3)k+1 − (X1 −

√
X3)k+1 − 4

1√
X3

X2X5

)
.

Using the formula

2
√
X3

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 = (X1 +

√
X3)k+1 − (X1 −

√
X3)k+1 (3.22)

we can write

r1 − r2 = f

2
√
X3

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 4

1√
X3

X2X5

 .

Now, x1 − y1 = f(2
√
X3) so that

(r1 − r2)(x1 − y1) = f

4X3

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 8X2X5

 . (3.23)
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Finally, (x2 − y2) = f(2
√
X4) = f

(
2√
X3
X5

)
gives that

(r1 − r2)(x2 − y2) = f

4X5

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 8

1

X3
X2X

2
5


= f

4X5

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 8X2X4

 .

(3.24)

To sum up, we have that f−1(〈r1, r2〉 = f−1(〈r1, r2〉 ∩ img(f)) + ker(f) is generated by

g1 = −X2
2 −X4 +

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 Xi
3,

g2 = X3

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2X5,

g3 = X5

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2X4,

g4 = X3X4 −X2
5 ,

(3.25)

which are thus local equations for Sym2(Y ). Note that the diagonal ∆ = {x1−y1 = x2−y2 = 0}
descends to Sym2(C2) as X3 = X4 = X5 = 0. After having computed local equations for the
symmetric square of a curve with a unique singular point of type Ak, we turn our attention to
the Hilbert square of such a curve.

3.19 Lemma. Let Y be a curve with a unique singular point of type Ak. Then, the Hilbert-Chow
morphism

Hilb2(Y )→ Sym2(Y ), ξ 7→
∑

x∈supp(ξ)

lengthx(ξ) · x

is the blowup of the diagonal.

Proof. This is a special case of [ES14, Theorem 7.7]

The following proposition describes the set of all length two subschemes of Y which are
supported only at the singular point y0 of Y , that is, the preimage h−1(2y0) of the point
2y0 ∈ Sym2(Y ) under the Hilbert-Chow morphism h : Hilb2(Y )→ Sym2(Y ).

3.20 Proposition. Every length two ideal

I ⊂
(

C[x, y]

〈xk+1 + y2〉

)
〈x,y〉

in the localisation of C[x,y]
〈xk+1+y2〉 at the ideal 〈x, y〉 is of the form Ia = 〈y + ax〉, for some a ∈ P1

(regarded as C ∪ {∞}), where I0 = 〈x2, y〉 and I∞ = 〈x, y2〉.

Proof. Let

R =

(
C[x, y]

〈xk+1 + y2〉

)
〈x,y〉

∼=
C[[x, y]]

〈xk+1 + y2〉

and I = 〈f1, . . . , fr〉 ⊂ R be an ideal of length two. Since any length m ideal contains xm, ym, we
have x2, y2 ∈ I and if f ∈ {f1, . . . , fr}, f 6= 0, is one of the generators for I, f = ax+bxy+cy for
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a, b, c ∈ C. Let us write f = yh(x)+ax. If h = 0, f = ax with a 6= 0 and I = 〈x, x2, y2〉 = 〈x, y2〉.
If h 6= 0, then f = xmyu + ax for a unit u ∈ R× and m ≥ 0. In fact, if c = 0, u = b 6= 0
and m = 1, and if c 6= 0, u = bx + c and m = 0. In both cases, if a = 0, we may replace the
generator f for I by xmy. Note however that 〈x2, xmy, y2〉 has length three, if m = 1 and there
needs to be an element of the form px+ qy in I meaning that we can disregard (or replace by
px+ qy) the generator xy. For the generator px+ qy of I, we either have q = 0, p 6= 0 and x ∈ I
implying I = 〈x, y2〉, or q 6= 0, implying I = 〈y + p

qx〉. It remains to discuss the case a 6= 0.
Recall that f = xmyu+ ax for a unit u and note that

f = xmyu+ ax =

{(
c+ bc

a y
) (
y + a

cx
)

+ 〈x2, y2〉, c 6= 0,

(a+ by)x, c = 0.

In the former case, f can be replaced by y + dx with d = a
c , in the latter by x. Finally, if I has

two generators y+ px, y+ qx with p, q 6= 0, then x ∈ I. Consequently, if I ⊂ R has length two,
it has at most two generators and then necessarily contains either x or y. If I ⊂ R is generated
by a single element, this element is of the form y+ax for a ∈ C∗. This proves the assertion.

3.21 Lemma. The singular locus of Hilb2(Y ) is isomorphic to the blowup of Y at its singular
point y0.

Proof. By [Har83, II, Corollary 7.15], we find a commutative diagram

BlSing(Sym2(Y ))∩∆Sing(Sym2(Y )) �
� //

��

Hilb2(Y )

h
��

Sing(Sym2(Y )) �
� // Sym2(Y ).

The singular locus of Hilb2(Y ) has to be contained in the preimage of the singular locus of
Sym2(Y ). By Proposition 3.20, the preimage of the point {2y0} = Sing(Sym2(Y )) ∩∆ is a P1

and the preimage of the singular locus therefore is Ỹ ∪ P1 where Ỹ denotes the blowup of Y
at its singular point. Consequently, the assertion follows if we can prove that the component
isomorphic to P1 lies in the smooth locus of Hilb2(Y ) except for the point(s) of intersection with
the component isomorphic to Ỹ .
Take a subscheme η entirely supported at the singular point of Y and corresponding to an ideal

Ia = 〈y + ax〉 ⊂
(

C[x, y]

〈xk+1 + y2〉

)
〈x,y〉

,

cf. Proposition 3.20. We argue, similarly to Lemma 1.3, that the tangent space

TηHilb2(Y ) = H0(Nη/Y )

is two-dimensional, showing that η ∈ Hilb2(Y ) is a smooth point. Using the normal sheaf
sequence of η in Y , cf. (1.2), η is a smooth point of Hilb2(Y ), if H1(Nη/Y ) = 0. Since η is
zero-dimensional, this follows immediately from the fact that Nη/Y is coherent.

We now compute local equations for Hilb2(Y ) by calculating the blowup of (3.25) along the
diagonal. Recall that the diagonal is given by X3 = X4 = X5 = 0 and consider the blowup of
the ambient C5 along the diagonal, i.e. the variety

Bl∆Sym2(C2) =

(X1, . . . , X5)× (a0 : a1 : a2) ∈ C5 × P2

∣∣∣∣∣∣∣∣∣
X3X4 −X2

5 =0

a0X4 − a1X3 =0

a0X5 − a2X3 =0

a1X5 − a2X4 =0

 ⊂ C5 × P2.
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3.2 Hilbert square of singular curves

Take the chart U0 = {a0 6= 0}. To calculate equations for the strict transform of Sym2(Y ) in
this chart, we consider the defining equations for Bl∆Sym2(Y ) ∩ U0 which are

−X2
2 −X4 +

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 Xi
3 = 0,

X3

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2X5 = 0,

X5

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2X4 = 0,

X3X4 −X2
5 = 0,

X4 − a1X3 = 0,

X5 − a2X3 = 0.

Substitution of the variables X4, X5 using the last two equations gives

−X2
2 − a1X3 +

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 Xi
3 = 0,

X3

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2a2X3 = 0,

a2X3

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2a1X3 = 0,

a1X
2
3 − a2

2X
2
3 = 0.

Elimination of factors corresponding to the exceptional divisor X3 = 0 then yields

−X2
2 − a1X3 +

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 Xi
3 = 0,

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2a2 = 0,

a2

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2a1 = 0,

a1 − a2
2 = 0.

Using the last equation, the third one is a multiple of the second and we can reduce the equations
to

−X2
2 −X3X

2
4 +

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 Xi
3 = 0,

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 Xi
3 − 2X2X4 = 0,

(3.26)
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where we write X4 for the variable a2. Local equations for the other charts are computed
similarly but are not relevant for our purposes as we are interested only in neighbourhoods of
the singular point of the singular locus. Using the Jacobian criterion on the equations (3.26) it
is simple to show that

Sing(Hilb2(Y ) ∩ U0) = {X2 −X1X4 = X3 −X2
1 = 2k−1Xk−1

1 −X2
4 = 0},

i.e. a curve with a singularity of type Ak−2. By working out the local equations in the other
coordinate charts of the blowup one can check that the singular locus admits no further singular
points. This provides a different proof of Lemma 3.21. In the same way one can deduce
that over the special point of Sym2(Y ) there lies the smooth quadric {a0a1 − a2

2 = 0} ⊂
Proj(C[a0, a1, a2]) ∼= P2 which is isomorphic to P1, reproving Proposition 3.20.

Now that we have local equations for Hilb2(Y ) we try to resolve its singularities by blowing
up the entire singular locus. To simplify our calculations, consider the coordinate change X2 7→
X2 +X1X4, X3 7→ X3 +X2

1 . The defining equations for Hilb2(Y ) in these new coordinates then
are

f1 = −X2
2 − 2a2X1X2 − a2

2X
2
1 − a2

2(X3 +X2
1 ) +

b k+1
2
c∑

i=0

(
k + 1

2i

)
Xk−2i+1

1 (X3 +X2
1 )i,

f2 =

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 (X3 +X2
1 )i − 2(X2 + a2X1)a2.

In order to simplify these equations, we are going to use the formula

b k+1
2
c∑

i=j

(
k + 1

2i+ 1

)(
i

j

)
= 2k−2j

(
k − j
j

)
, (3.27)

as well as the formula

b k+1
2
c∑

i=j

(
k + 1

2i

)(
i

j

)
= (−1)k+12k−2j

((
−j − 1

k − 2j

)
+ 2

(
−j − 1

k − 2j + 1

))
. (3.28)

3.22 Remark. Binomial identities such as (3.27) and (3.28) can be verified using the Wilf-
Zeilberger method. An explanation and proof of this method can be found in [PWZ96]. The
major advantage of the Wilf-Zeilberger method is that as long as one has come up with an
identity that possibly could hold, it can be proven by a computer. Details on this are also
explained in [PWZ96]. Formula (3.27) and other binomial identities in this thesis have been
verified using the RISCErgoSum software [RIS] provided by the Research Institute for Scientific
Computing in Linz. We thank Prof. Peter Paule and the RISC Linz for granting us access to
the software. Formula (3.27) can also be found in [Yam17b, formula (2.2)].
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3.2 Hilbert square of singular curves

Replace f1 by f3 = f1 −X1f2 to obtain

f1 −X1f2 = −X2
2 −X3X

2
4 +

b k+1
2
c∑

i=0

((
k + 1

2i

)
−
(
k + 1

2i+ 1

))
Xk−2i+1

1 (X3 +X2
1 )i

= −X2
2 −X3X

2
4 +

b k+1
2
c∑

i=0

((
k + 1

2i

)
−
(
k + 1

2i+ 1

))
Xk−2i+1

1

i∑
j=0

(
i

j

)
Xj

3X
2i−2j
1

= −X2
2 −X3X

2
4 +

b k+1
2
c∑

j=0

b k+1
2
c∑

i=j

((
k + 1

2i

)
−
(
k + 1

2i+ 1

))(
i

j

)
Xk−2j+1

1 Xj
3

= −X2
2 −X3X

2
4

+

b k+1
2
c∑

j=0

2k−2j

(
(−1)k+1

((
−j − 1

k − 2j

)
+ 2

(
−j − 1

k − 2j + 1

))
−
(
k − j
j

))
Xk−2j+1

1 Xj
3

= −X2
2 +X3(2k−1Xk−1

1 −X2
4 )

+

b k+1
2
c∑

j=2

2k−2j

(
(−1)k+1

((
−j − 1

k − 2j

)
+ 2

(
−j − 1

k − 2j + 1

))
−
(
k − j
j

))
Xk−2j+1

1 Xj
3 ,

using (3.27) and (3.28). The equation f2 can be simplified as follows

f2 =

b k+1
2
c∑

i=0

(
k + 1

2i+ 1

)
Xk−2i

1 (X3 +X2
1 )i − 2X2X4 − 2X1X

2
4

=

b k+1
2
c∑

i=0

i∑
j=0

(
i

j

)(
k + 1

2i+ 1

)
Xk−2j

1 Xj
3 − 2X2X4 − 2X1X

2
4

=

b k+1
2
c∑

j=0

b k+1
2
c∑

i=j

(
i

j

)(
k + 1

2i+ 1

)
Xk−2j

1 Xi
3 − 2X2X4 − 2X1X

2
4

=

b k+1
2
c∑

j=0

2k−2j

(
k − j
j

)
Xk−2j

1 Xj
3 − 2X2X4 − 2X1X

2
4

=

b k+1
2
c∑

j=1

2k−2j

(
k − j
j

)
Xk−2j

1 Xj
3 − 2X2X4 + 2X1(2k−1Xk−1

1 −X2
4 ),

using (3.27). In order to further simplify f3, define

F (j, k) = (−1)k+1

((
−j − 2

k − 2j − 2

)
+ 2

(
−j − 2

k − 2j − 1

))
−
(
k − j − 1

j + 1

)
.

It is simple to check that F (j, k) satisfies, and is completely determined by, the following recur-
sive relation

F (j, k + 1) =
(k − j)F (j, k)

k − 2j
, F (j, 2j + 1) = 2. (3.29)

Therefore, by examining this relation,

F (j, k) =
2(k − j − 1)!

j!(k − 2j − 1)!
= 2

(
k − j − 1

j

)
, (3.30)
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and we can write

f3 = −X2
2 +X3(2k−1Xk−1

1 −X2
4 ) +

b k+1
2
c∑

j=2

2k−2jF (j − 1, k)Xk−2j+1
1 Xj

3

= −X2
2 +X3(2k−1Xk−1

1 −X2
4 ) +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj
3 .

The identity (3.30) can also be proven using the methods described in Remark 3.22. To sum
up, in the new coordinates the local equations for Hilb2(Y ) are

f3 = −X2
2 +X3(2k−1Xk−1

1 −X2
4 ) +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj
3 ,

f2 =

b k+1
2
c∑

j=1

2k−2j

(
k − j
j

)
Xk−2j

1 Xj
3 − 2X2X4 + 2X1(2k−1Xk−1

1 −X2
4 ).

(3.31)

The singular locus in the new coordinates now is X2 = X3 = 2k−1Xk−1
1 − X2

4 = 0. Take the
blowup of the ambient C4 along this locus. Defining equations for the blown up C4 then are

{a0X3 − a1X2 = a0t− a2X2 = a1t− a2X3 = 0} ⊂ C4 × P2,

where we write t = 2k−1Xk−1
1 −X2

4 . In the chart U1 = {a1 6= 0}, the total transform of Hilb2(Y )
is given by

0 = X2
3

−a2
0 + a2 +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−2
3

 ,

0 = X3

b k+1
2
c∑

j=1

2k−2j

(
k − j
j

)
Xk−2j

1 Xj−1
3 − 2a0X4 + 2a2X1

 ,

0 = 2k−1Xk−1
1 −X2

4 − a2X3.

(3.32)

Local equations for the strict transform of Hilb2(Y ) are thus

0 = − a2
0 + a2 +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−2
3 ,

0 =

b k+1
2
c∑

j=1

2k−2j

(
k − j
j

)
Xk−2j

1 Xj−1
3 − 2a0X4 + 2a2X1,

0 = 2k−1Xk−1
1 −X2

4 − a2X3.

(3.33)
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We can eliminate the variable a2 using the first equation. The corresponding calculations are

b k+1
2
c∑

j=1

2k−2j

(
k − j
j

)
Xk−2j

1 Xj−1
3 − 2a0X4 − 2X1

−a2
0 +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−2
3


=

b k+1
2
c∑

j=1

2k−2j

(
k − j
j

)
Xk−2j

1 Xj−1
3 − 2a0X4 + 2a2

0X1 −
b k+1

2
c∑

j=2

2k−2j+2

(
k − j
j − 1

)
Xk−2j+2

1 Xj−2
3

=

b k+1
2
c∑

j=1

2k−2j

(
k − j
j

)
Xk−2j

1 Xj−1
3 − 2a0X4 + 2a2

0X1 −
b k+1

2
c∑

l=1

2k−2l

(
k − l − 1

l

)
Xk−2l

1 X l−1
3

=

b k+1
2
c∑

j=1

2k−2j

((
k − j
j

)
−
(
k − j − 1

j

))
Xk−2j

1 Xj−1
3 − 2a0X4 + 2a2

0X1,

=

b k+1
2
c∑

j=1

2k−2j

(
k − j − 1

j − 1

)
Xk−2j

1 Xj−1
3 − 2a0X4 + 2a2

0X1,

and

2k−1Xk−1
1 −X2

4 +X3

−a2
0 +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−2
3


= 2k−1Xk−1

1 −X2
4 − a2

0X3 +X3

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−2
3 .

Therefore, we obtained the following simplified equations

0 =

b k+1
2
c∑

j=1

2k−2j

(
k − j − 1

j − 1

)
Xk−2j

1 Xj−1
3 − 2a0X4 + 2a2

0X1,

0 = 2k−1Xk−1
1 −X2

4 − a2
0X3 +X3

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−2
3 ,

(3.34)

for the strict transform of Hilb2(Y ) under the blowup of the ambient Hilb2(C2) along the singular
locus of Hilb2(Y ). Consider the change of coordinates X4 7→ X4−2a0X1. Then, (3.34) becomes

f̃1 =

b k+1
2
c∑

j=2

2k−2j

(
k − j − 1

j − 1

)
Xk−2j

1 Xj−1
3 − 2a0X4 + 2X1(2k−3Xk−3

1 − a2
0)

=

b k−1
2
c∑

j=1

2k−2−2j

(
k − 2− j

j

)
Xk−2−2j

1 Xj
3 − 2a0X4 + 2X1(2k−3Xk−3

1 − a2
0),

f̃2 = 4X2
1 (2k−3Xk−3

1 − a2
0)−X2

4 − 4a0X1X4 − a2
0X3 +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−1
3 .

(3.35)

We see that the first equation of (3.35) is the same as the second defining equation for the
Hilbert square of a curve with a singularity of type Ak−2, see (3.31).
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

Replace f̃2 by f̃3 = f̃2 − 2X1f̃1 to obtain

f̃3 = 4X2
1 (2k−3Xk−3

1 − a2
0)−X2

4 − 4a0X1X4 − a2
0X3 +

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−1
3

− 2X1

b k−1
2
c∑

j=1

2k−2−2j

(
k − 2− j

j

)
Xk−2−2j

1 Xj
3 − 2a0X4 + 2X1(2k−3Xk−3

1 − a2
0)


= −X2

4 − a2
0X3

+

b k+1
2
c∑

j=2

2k−2j+1

(
k − j
j − 1

)
Xk−2j+1

1 Xj−1
3 −

b k−1
2
c∑

j=1

2k−1−2j

(
k − 2− j

j

)
Xk−1−2j

1 Xj
3

= −X2
4 − a2

0X3

+

b k−1
2
c∑

j=1

2k−2j−1

(
k − j − 1

j

)
Xk−2j−1

1 Xj
3 −

b k−1
2
c∑

j=1

2k−1−2j

(
k − 2− j

j

)
Xk−1−2j

1 Xj
3

= −X2
4 − a2

0X3 +

b k−1
2
c∑

j=1

2k−1−2j

((
k − j − 1

j

)
−
(
k − 2− j

j

))
Xk−1−2j

1 Xj
3

= −X2
4 − a2

0X3 +

b k−1
2
c∑

j=1

2k−1−2j

(
k − 2− j
j − 1

)
Xk−1−2j

1 Xj
3

= −X2
4 +X3(2k−3Xk−3

1 − a2
0) +

b k−1
2
c∑

j=2

2k−1−2j

(
k − 2− j
j − 1

)
Xk−1−2j

1 Xj
3 .

By comparing the equations f̃1 and f̃3 defining the strict transform in the chart U0 with
equations (3.31), we see that they are the same as (3.31) but with k replaced by k − 2. This
proves the following theorem.

3.23 Theorem. Let Y be a curve admitting a unique singular point y0 of type Ak and k ≥ 5.

Let π : ˜Hilb2(Y )→ Hilb2(Y ) be the blowup of Hilb2(Y ) along its singular locus. Then,

( ˜Hilb2(Y ), p) ∼= (Hilb2(Ỹ ), q),

where p and q denote the singular points of the respective singular loci.

3.24 Remark. If Y is a curve with a unique singular point of type Ak, the singular locus of
Hilb2(Y ) is a curve with a singular point of type Ak−2. For k ≤ 4, the singular locus of the
strict transform of Hilb2(Y ) under the blowup of the ambient space along the singular locus of
Hilb2(Y ) is smooth. Therefore, in the notation of Theorem 3.23,

( ˜Hilb2(Y ), p) ∼= (Hilb2(Ỹ ), q)

holds for all points p, q of the respective singular loci.

3.25 Remark. R. Yamagishi treated this case in [Yam17b] but there are several errors in his
computations. For example, he asserts and frequently uses the formula

bn+1
2
c∑

i=k

(
n+ 1

2i

)(
i

k

)
= 2n−2k n

n− k

(
n− k + 1

k

)
,
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3.2 Hilbert square of singular curves

see [Yam17b, formula (2.1)]. This is incorrect, e.g. for (n, k) = (4, 2) the left-hand side is 5
whilst the right-hand side is 6. 1

3.26 Remark. Note that the isomorphism in Theorem 3.23 does not come from a global

isomorphism between Hilb2(Ỹ ) and ˜Hilb2(Y ). In fact, let Y be a curve with unique singular
point of type A1. Then, Ỹ is smooth, therefore Hilb2(Ỹ ) ∼= Sym2(Ỹ ). On the other hand, as the
singular locus of Hilb2(Y ) is isomorphic to Ỹ , it is smooth, and the singularities of Hilb2(Y ) can
be resolved by a single blowup of the entire singular locus. Consider the commutative diagram

˜Hilb2(Y ) //

��

Hilb2(Y )

��
Hilb2(Ỹ ) // Sym2(Y )

where the horizontal maps are the blowups along the respective singular loci, the vertical map
on the right is the Hilbert-Chow morphism and the vertical left on the left is given by the
universal property of the normalisation Hilb2(Ỹ ) → Sym2(Y ). Then the horizontal maps are
finite whilst the vertical map on the right contracts a rational curve in Hilb2(Y ). Therefore,
the vertical map an the left also contracts a rational curve and Hilb2(Ỹ ) cannot be globally

isomorphic to ˜Hilb2(Y ).

3.27 Corollary. Let Y be a curve with a unique singular point of type Ak. Then, the singular-
ities of Hilb2(Y ) can be resolved by successive blowups of the singular locus of Hilb2(Y ). Under
this succession of blowups, the fibre over the singular point of the singular locus of Hilb2(Y ) is
a chain of l =

⌊
k−1

2

⌋
reduced rational curves with dual graph

E1 E2 El
.

Moreover, the intersection matrix (EiEj)
l
i,j=1 is negative definite.

Proof. Every blowup gives a reduced rational curve that is contracted to the singular point of
the singular locus of the preceding blowup, as long as the singular locus of the preceding blowup
is still singular. Moreover, these curves intersect each other in at most one point and transverse
at these points. This can be seen from the local equations above. It can also be seen as follows:
let W → Hilb2(Y ) be the resolution obtained by successive blowups of the entire singular locus.
Then, W → Sym2(Y ) is likewise a resolution and the universal property of normalisation gives
a commutative diagram

W
r //

c
��

Hilb2(Y )

h
��

Sym2(Y ν) // Sym2(Y ).

Since W and Sym2(Y ν) are smooth surfaces, c factors as a composition of blowups of smooth
points. Stated differently, c contracts a chain of smooth rational curves to a smooth point
of Sym2(Y ν). By commutativity of the diagram, one of these curves is the P1 contracted by
the Hilbert-Chow morphism h, see Proposition 3.20 and the proof of Lemma 3.21, and the
remaining curves are the fibre of r over the singular point of the singular locus of Hilb2(Y ).
Their intersection matrix thus is negative definite by Grauert’s criterion [Gra62, page 367].
As l =

⌊
k−1

2

⌋
blowups of Hilb2(Y ) along its singular locus are needed to obtain a smooth

1In fact, the left-hand side clearly is always an integer but the right-hand side can become rational, see e.g.
(n, k) = (3, 1) where the right-hand side results in 3

2
(and the left-hand side equals one).
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

singular locus, the number of curves in the fibre of r over the singular point of the singular locus
of Hilb2(Y ) is l, as asserted. Moreover, every such curve intersects the centre of a succeeding
blowup in precisely one point, these curves thus have the asserted dual graph.

3.28 Corollary. Let Y be a curve with a unique singular point of type Ak and let W → Hilb2(Y )
be the resolution of singularities of Y obtained by successive blowups of the singular locus. Then,
Pic0(W ) ∼= Pic0(Y ν).

Proof. By Corollary 3.27 there is a sequence of blowups of smooth points c : W → Sym2(Y ν).
Consequently, Pic(W ) = Pic(Sym2(Y ν)) ⊕ Zl, where l is the number of blowups. But this
implies the assertion using that Pic0(Sym2(Y ν)) ∼= Pic0(Y ν) by Lemma 2.26.

3.29 Remark. The results of this section can be generalised to varieties Y with a unique
singular point of type Ak and dimension greater than one. To do so, one needs to add squares
of new variables to the locally defining equation for Y . This changes the number of variables
one has to deal with in the local computations for Sym2(Y ) and Hilb2(Y ) accordingly. The
crucial step in proving our results was to find the correct formulas in the binomial coefficients
which can still be applied regardless the number of variables.

3.3 Degenerations of the Picard scheme

We are now able to generalise our approach from chapter two, see Theorem 2.29 and Theorem
2.32, for computing the degenerate Picard scheme of a smoothing F → B of the Fano scheme
F (X) = F0 of lines on a singular cubic threefold X. Theorem 3.5 shows that the blowup
of F (X) along its singular locus Σ results in Hilb2(Σ) and Theorem 3.23 shows that further
blowups along the entire singular locus of Hilb2(Σ) yield a resolution of F (X). We begin by
analysing the relative situation, i.e. by describing the total transform of the blowup of F along
the singular locus of F0.

3.30 Proposition. Let Y be a curve with unique singular point of type Ak, k ≥ 3, and let
π : H → B be a smoothing of H0 = Hilb2(Y ) with regular total space H. If r : H̃ → H denotes
the blowup of H along C = (H0)sing, then r−1(H0) = W∪E, where W denotes the strict transform
of H0 and E is the total space of a P1-bundle over Wsing. Moreover, W ∩E = Wsing ∪P , where
P is the fibre of E over the unique point c ∈Wsing with r(c) = Csing, hence isomorphic to P1.

Proof. Denote by E = r−1((H0)sing) the exceptional divisor of the blowup. Our local calculations
above have shown that the singular locus of Hilb2(Y ) is locally a complete intersection in the
respective ambient space. As being locally a complete intersection is an intrinsic property of a
scheme and not dependent on the ambient space, cf. [Har83, II, Remark 8.22.2], (H0)sing ⊂ H
is locally given by two equations. Thus, for every point p ∈ (H0)sing the fibre r−1(p) ⊂ E is
isomorphic to P1. The intersection E∩W can easily be computed from the local equations (3.33)
describing the strict transform W of H0 locally. In fact, by intersecting these equations with
the local equation X3 = 0 for E, one finds that the intersection W ∩ E has two components,
one given by the singular locus of W and the other given (in the respective coordinates) by
X1 = X2 = X3 = X4 = a2

0 − a2 = 0. By examining the other charts also, it is simple to check
that W ∩E = Wsing ∪P , where P = {a2

0− a1a2 = 0} ⊂ Proj(C[a0, a1, a2]), that is, P ∼= P1, and
that P = r−1(η0) where η0 is the singular point of C = (H0)sing.

By Lemma 2.21, r−1(Creg) defines a P1-bundle over the regular points of Wsing and therefore,

using the above, if U ⊂ H̃ is a neighbourhood of an arbitrary point p ∈Wsing,

E ∩ U ∼= (Wsing ∩ U)× P1.

and this proves the assertion as every P1-fibration over a curve is a P1-bundle, cf. [Sch70, Satz
4.9].
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3.3 Degenerations of the Picard scheme

3.31 Remark. The analogous result holds for a smoothing π : F → B of F0 = F (X), where
X is a cubic threefold with a unique singular point of type Ak and k ≥ 3. The only thing that
needs to be checked is that the inverse image of the singular locus of F (X) under the morphism
ϕ : Hilb2(Σ)→ F (X) has two components, one of them the singular locus of Hilb2(Σ) and the
other isomorphic to a P1. But this was proven in Lemma 3.2.

Let B be one-dimensional and π : F → B be a smoothing of F0 = F (X) where X is a cubic
threefold with unique singular point of type Ak and k ≥ 3. Then, by Proposition 3.30, taking
the blowup of F along the singular locus of F0 results in a situation which is almost the same as
described in Lemma 2.21 but with one fibre of the resulting P1-bundle being contained in the
strict transform. The following corollary should be thought of as an analogue of Lemma 2.21
but taking into account the additional intersection of the resulting P1-bundles with the strict
transform.

3.32 Corollary (Strong embedded resolution for Fano schemes of lines on cubic threefolds).
Let π : F→ B be a smoothing of F0 = F (X) where X is a cubic threefold with a unique singular
point of type Ak and k ≥ 3. Then there exists a sequence

r : F̃ = Fs
rs // · · · r2 // F1 r1 // F0 = F

of blowups with centres lying over the singular locus of F0 such that F̃ is smooth and

(i) F̃0 = r−1(F0) ⊂ F̃ is a simple normal crossing divisor;

(ii) F̃0 = W ∪ E1 ∪ · · · ∪ Es where W denotes the strict transform of F0 and each Ei is the
total space of a P1-bundle over Σν ;

(iii) if C ⊂ W denotes the curve arising as inverse image of the singular locus (F0)sing inside
W , i.e. C = r−1((F0)sing) ∩W , then for every point p ∈ C there exists a neighbourhood

U of p inside F̃ such that the central fibre F̃0 of F̃→ B is locally a product

F̃0 ∩ U ∼= (C ∩ U)×K,

where K is a configuration of curves with dual graph as in the corresponding case of Lemma
2.9;

(iv) Ei ∩W ∼= P1 for i ∈
{

1, . . . ,
⌊
k−1

2

⌋}
.

Proof. After l =
⌊
k−1

2

⌋
blowups as in Proposition 3.30, the singular locus C of the strict

transform W of F0 becomes a smooth curve isomorphic to Σν and W has, depending on the
parity of k, a singularity of type A1 or A2 transversally along its singular locus. If E1, . . . , El
denote (the strict transforms of) the exceptional divisors of these blowups, each is the total
space of a P1-bundle over C and for every point p ∈ C there exists a neighbourhood U = U(p)
such that

(W ∪ E1 ∪ · · · ∪ El) ∩ U ∼= (C ∩ U)×K,

where K is a configuration of curves as for an embedded resolution of a curve with a unique
singular point of type Ak after l blowups of its singular point, cf. Lemma 2.9 and Lemma 2.21.
Following Proposition 3.30 there is a unique point p ∈ C such that for i ∈ {1, . . . , l} the fibre
(Ei)p of Ei over p is contained in W .
To obtain the normal crossing assertion, we only need to blow up once more along C, if k is odd,
and thrice more, if k is even. This is clear by Lemma 2.21 as W admits a singularity of type A1

or A2 transversally along C and C is smooth. Note that after performing these blowups, the
blown up total space F̃ is locally given by t−xaybzc = 0, hence smooth. The asserted properties
now all hold by construction, respectively have been proven in Lemma 2.21.
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

In order to compute the degeneration data for the Picard scheme of F0, we would like to
argue similarly to the proofs of Theorem 2.29 and Theorem 2.32 by computing a tail reduction
of π : F→ B explicitly using the algorithm provided by the proof of Theorem 2.22. The initial
step in this algorithm is to modify the total space of a given family Z→ B by a series of blowups
Z̃→ Z such that Z̃ is smooth and Z̃0 ⊂ Z̃ defines a simple normal crossing divisor. If the central
fibre Z0 ⊂ Z has curve singularities of type Ak transversally along a smooth singular locus, we
have shown in Lemma 2.21 that this is possible by successive blowups of the singular locus of
Z0. However, Corollary 3.32 shows that the same is true for a smoothing π : F → B of the
Fano scheme of lines F (X) = F0 of a cubic threefold with a unique singular point of type Ak.
Therefore, the algorithm from the proof of Theorem 2.22 generalises to π : F→ B by taking in
the initial step the embedded resolution of F0 ⊂ F from Corollary 3.32.

3.33 Definition. Let π : F → B be a smoothing of F0 = F (X) where X is a cubic threefold
with a unique singular point of type Ak. By the tail reduction of π : F→ B we mean the family
π′ : F′ → B′ obtained by applying the algorithm from the proof of Theorem 2.22 to π : F → B
but taking in the initial step the embedded resolution of F0 ⊂ F from Corollary 3.32.

By computing a tail reduction of π : F → B explicitly, we are able to prove the following
theorem which is our main result on the degenerate Picard scheme of the Fano scheme of lines
on a cubic hypersurface with a unique singular point of type Ak.

3.34 Theorem. Let π′ : F′ → B′ denote the tail reduction of π : F→ B. Then, the degenerate
Picard scheme of F0 with respect to the family π : F → B is uniquely determined by Pic0(F′0)
which has the form

1 −→ K −→ Pic0(F′0) −→ Pic0(Σν)× Pic0(T ) −→ 0,

where T is a smooth curve of genus g(T ) = dk−1
2 e. Moreover,

K =

{
C∗, if k is odd;

0, if k is even.

Proof. Following Corollary 3.32, taking successive blowups of F along the singular locus of F0

and its strict transforms provides a strong embedded resolution of F0 ⊂ F. Denote by π̃ : F̃→ B
the family obtained this way. Then the dual graph of F̃0 is given by

E1 E2 El
El+2

El+1

W

2 4 2l

2l + 1

4l + 2

1

if k is even, and by

E1 E2 El El+1 W
2 4 2l 2l + 2 1

if k is odd. In these dual graphs, l =
⌈
k−1

2

⌉
, W denotes the strict transform of F0 and each Ei

is the total space of a P1 bundle over Σν . Moreover, circled numbers indicate the multiplicity of
the respective component and two vertices are joined by a solid edge for every irreducible com-
ponent of their intersection being isomorphic to Σν ; and by a dashed edge for every irreducible
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3.3 Degenerations of the Picard scheme

component of their intersection being isomorphic to P1. The resulting dual graphs of the central
fibre F′0 of the tail reduction π′ : F′ → B′ are then similar to those obtained in Lemma 2.10 and
Lemma 2.11 except for the additional intersection with W which turn them into

E1
1

E2
1

E1
l−1

E2
l−1

E1
l

E2
l

T

E1
l+1

. . .E2l+1
l+1

W

1

1

1

1

1

1

1

11

1

if k is even, and

E1
1

E2
1

E1
l−1

E2
l−1

E1
l

E2
l

T W

1

1

1

1

1

1

1 1

if k is odd. In both cases, let E ∈ {E1
1 , E

2
1 . . . , E

1
l , E

2
l } and let K(E) such that F′0 = K(E)∪E.

As in the proof of Theorem 2.32, we can compute, using Lemma 2.14,

Pic0(F′0) = Pic0(K(E) ∪ E)

= Pic0(K(E))×Pic0(K(E)∩E) Pic0(E)

= (∗)

and then, since Pic0(E) ∼= Pic0(Σν) by Lemma 2.28 and Pic0(K(E) ∩ E) ∼= Pic0(Σν ∪pt. P1) ∼=
Pic0(Σν) by Lemma 2.14,

(∗) = Pic0(K(E))×Pic0(Σν) Pic0(Σν)

= Pic0(K(E)),

This shows that none of the components E ∈ {E1
1 , E

2
1 . . . , E

1
l , E

2
l } contribute to the Picard

scheme of F′0 and consequently, that Pic0(F′0) ∼= Pic0(W ∪ T ). Since Pic0(W ) ∼= Pic0(Σν) by
Corollary 3.28, we can conclude in the precise same way as in the proof of Theorem 2.32, if k
is even. If k is odd, we can conclude the same way as in the proof of Theorem 2.29, if we can
show that

{L ∈ Pic0(W ) | L |W1
∼= L |W2} ∼= Pic0(W ),

where W1,W2
∼= Σν are the curves in W such that r(W1 ∪W2) = Σ ⊂ F (X) and the map

r is the resolution of singularities of F (X) by successive blowups of the singular locus as in
Corollary 3.32. This is because we used [vK10, Remark 6.2] in the proof of Theorem 2.29 and
this result does not generalise to our case. Consider the commutative diagram

W //

c
��

Hilb2(Σ)

h
��

// F0 = F (X)

Sym2(Σν) // Sym2(Σ).

from Corollary 3.27. The map c maps the curves W1,W2 isomorphically to curves Σ1,Σ2 ⊂
Sym2(Σν) and Σi = {p + qi | p ∈ Σ}, where q1, q2 are the points in Σν that are mapped to
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3 Degenerations of the Picard scheme of the Fano scheme of lines on a cubic threefold

the singular point q0 of Σ under the normalisation Σν → Σ. Moreover, the pullback by c is an
isomorphism of the respective Picard schemes, cf. Corollary 3.28, and the result follows if we
can show that for all L ∈ Pic0(Sym2(Σν)) the restrictions L |Σ1 and L |Σ2 are isomorphic. But
this was proven in Lemma 3.18.

This result coincides with results about the degenerations of the intermediate Jacobian of a
cubic threefold, which were first investigated for special cases by S. Casalaina-Martin and R.
Laza, see [CL09, Table 1, page 22] and later computed in greater generality by S. Casalaina-
Martin, S. Grushevsky, K. Hulek and R. Laza, cf. [CGHL15, Table 1, page 37].

3.35 Corollary. If X is a cubic threefold with unique singular point of type Ak, then k ≤ 11.

Proof. Let π : F → B be a smoothing of F0 = F (X) coming from a smoothing X → B of
X0 = X. Then, Pic0(Fb) ∈ A5 for b 6= 0 and the degenerate Picard scheme of F0 with respect
to this family defines a point of AVor

5 as we defined it to be a limit of points in AVor
5 . But if

k ≥ 12, Theorem 3.34 computes the degenerate Picard scheme of F0 and yields a point in AVor
g

for g ≥ 6 which yields a contradiction.
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4 Concluding remarks and outlook

In this chapter, we remark on some further results we obtained but without including proofs.
This is, because the methods used to prove these results are either the same as those already
presented in this thesis or the proofs rely, at least partially, on lengthy calculations. We also
want to pose some questions we left unanswered and explain which answers seem plausible to
us. Moreover, we hint at methods that could possibly be used for answering these questions.

Finally, we think it is worth mentioning the implications of our results for the 27 lines on
singular cubic surfaces.

4.1 Singular points of type Dk, E6, E7 or E8 and the case of several
isolated singular points

Through all of this thesis, we always limited ourselves to cubic hypersurfaces X with a unique
singular point of type Ak. By using the local normal forms from Table 1.1, we can see that
singularities of type Dk, k ≥ 4, and E6, E7, E8 have corank two whereas singularities of type
Ak had corank one for k ≥ 2 and corank zero for k = 1. As the Recognition Principle, Lemma
1.9, holds for all singularities of ADE-type, see [BW79], and also the algorithmic proof of the
Generalised Morse Lemma 1.12 does not rely on the corank of the singularity, Theorem 1.15
generalises to the following theorem.

4.1 Theorem. Let Y ⊂ CN be a hypersurface defined by a polynomial P ∈ C[x1, . . . , xN ] and
assume that the origin is an isolated singular point of Y of corank at most three. Then, there
are polynomials C1, . . . , Ck+1 in the coefficients of P and depending on the choice of an analytic
coordinate change such that the conditions

C1 = · · · = Ck = 0, Ck+1 6= 0

on the coefficients of P are equivalent to (Y, 0) being of type T ∈ {Ap, Dq, E6, E7, E8 | p ≥
1, q ≥ 4}. The number k of these conditions depends on the Milnor number of the singularity.
Moreover, fixing the analytic coordinate change they depend on, there is an explicit algorithm
computing them.

Sketch of proof. We already formulated the Recognition Principle, Lemma 1.9, for all singular-
ities of ADE-type. Also the algorithmic proof of the Generalised Morse Lemma, Lemma 1.12,
is not limited to polynomials defining a hypersurface singularity of corank one. Therefore if
P ∈ C[x1, . . . , xN ] is a polynomial in N variables and such that {P = 0} defines a hypersur-
face singularity of corank two we find, by the Generalised Morse Lemma, for every fixed k a
coordinate change such that

ϕ∗P (x1, . . . , xN ) = x2
1 +· · ·+x2

N−2 +P3(xn−1, xN )+· · ·+Pk+1(xn−1, xN )+
N−2∑
i=1

xiQi(x1, . . . , xN )
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4 Concluding remarks and outlook

with Pi ∈ mi and Qi ∈ mk. By applying the Recognition Principle to this equation, one obtains
the desired polynomial conditions in the coefficients of P .

If the cubic hypersurface X ⊂ Pn admits a unique singular point p0 of ADE-type, the singular
locus Σ of F (X) is smooth or singular at isolated points only by Lemma 1.5 and Table 2.1. Just
as we did for a singularity of type Ak, a suitable normal form for the defining equation f of X
can be computed if (X, p0) is of type Dk, k ≥ 4, E6, E7 or E8. Similarly to our calculations
in chapter one, one finds that the type of (F (X), l) for l ∈ Σreg is independent of l and can
be compared to the type of (X, p0) by handing the problem to a computer. With our limited
computational power we obtained the following generalisation of Theorem 1.29.

4.2 Theorem. If X ⊂ Pn is a cubic hypersurface with unique singular point p0 of ADE-
type T and l ∈ Σreg ⊂ F (X) is a regular point of the singular locus of the Fano scheme
of lines on X, then the singularity types (X, p0) and (F (X), l) are the same for all T ∈
{A1, . . . , A5, D4, . . . , D7, E6, E7, E8}.

Sketch of proof. If l ∈ Σreg is a line in X passing through the singular point p0 of X and
corresponding to a smooth point of the singular locus of F (X), we have shown in section 1.2.2
how to obtain a simultaneous normal form for the defining equation f for X and the defining
equations for F (X) around l, if X has a unique singular point of type Ak. For other ADE-
types, similar coordinate changes can be used to obtain such a simultaneous normal form.
Then, computing the defining equations for F (X), they are of a form similar to (1.11) and a
formal coordinate change yields a defining equation for the hypersurface singularity (F (X), l).
The assertion then follows by comparing the respective coefficient conditions for (X, p0) and
(F (X), l).

The limitation in the theorem is again only due to lack of computational power, but covers all
possible isolated ADE-singularities on cubic surfaces. For cubic threefolds, more cases can be
covered by our methods, cf. Theorem 1.32, but since no classification of ADE-singularities on
cubic threefolds is available in the literature, it is not clear if we were able to cover all possible
cases.

For a cubic hypersurface X ⊂ Pn there can of course be more than a single singular point on
it and it is therefore natural to ask about the singularities of F (X) in such a case. Let X ⊂ Pn
be such a cubic hypersurface and denote by p0, . . . , pr its singular points such that all of the
singularities (X, pi) are of ADE-type. If we denote by Σi the set of lines passing through the
singular point pi, i.e.

Σi = {l ∼= P1 ⊂ X | pi ∈ l},

then it can be shown that

Σ = F (X)sing =
r⋃
i=0

Σi.

Each Σi can itself be singular and the singular locus Σ of F (X) is singular at the singular
points of the Σi as well the points of intersection Σi ∩ Σj for i 6= j. It follows from [Wal99,
Theorem 2.1] that any three distinct components Σi, Σj , Σk of Σ cannot intersect in a point,
i.e. Σi ∩ Σj ∩ Σk = ∅ whenever i 6= j 6= k. Local calculations similar to those in chapter one
then provide the following.

4.3 Theorem. For i, j ∈ {0, . . . , r} and i 6= j, let qi,j ∈ Σi ∩ Σj ⊂ F (X). Assume that (X, pi)
is of type Ti and that (X, pj) is of type Tj. Then, (F (X), qi,j) is of type Ti × Tj.
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Sketch of proof. After computing a suitable normal form for the defining equation f for X, local
equations for F (X) around a point qi,j as in the assertion take the form

F3,0(x2, . . . , xn, y2, . . . , yn) =x2
4 + · · ·+ x2

n + h1, h1 ∈ m3,

F2,1(x2, . . . , xn, y2, . . . , yn) =x2 + h2, h2 ∈ m2,

F1,2(x2, . . . , xn, y2, . . . , yn) =y2 + h3, h3 ∈ m2,

F0,3(x2, . . . , xn, y2, . . . , yn) =y2
4 + · · ·+ y2

n + h4, h4 ∈ m3.

Using a formal coordinate change ϕ, one can then bring these equations to the form

ϕ∗F3,0(x2, . . . , xn, y2, . . . , yn) =x2
4 + · · ·+ x2

n + h,

ϕ∗F2,1(x2, . . . , xn, y2, . . . , yn) =x2,

ϕ∗F1,2(x2, . . . , xn, y2, . . . , yn) =y2,

ϕ∗F0,3(x2, . . . , xn, y2, . . . , yn) =y2
4 + · · ·+ y2

n + g,

where h = h(x2, . . . , xn) depends on x-coordinates only and g = g(y2, . . . , yn) depends on
y-coordinates only. Therefore, (F (X), qi,j) is formally equivalent to the product of two hyper-
surface singularities and the Recognition Principle can be applied separately to each of these
hypersurface singularities.

This generalises a result by R. Yamagishi, see [Yam17a, Theorem 2.4], on singularities of the
Fano scheme of lines on a cubic fourfold.

We believe that also the computations for the degenerate Picard scheme of a cubic three-
fold can be generalised to other isolated ADE-singularities and combinations of isolated ADE-
singularities on a cubic threefold.

4.2 27 lines on singular cubic surfaces

Let X ⊂ P3 be a cubic surface. If X is smooth, F (X) consists of 27 reduced points, see Example
1.2. The classification of cubic surfaces due to J. W. Bruce and C. T. C. Wall, see [BW79],
shows that every isolated singular point p0 ∈ X of ADE-type is of type A1, A2, A3, A4, A5,
D4, D5 or E6. Table 4.1 shows the number of lines on a cubic surface X with a unique singular
point of one of the types above. These numbers can for example be found in [Dol12, Table 9.1].
As the lines passing through p0 are parameterised by Σ and Σ is zero-dimensional of degree six,

Type of (X, p0) A1 A2 A3 A4 A5 D4 D5 E6

#F (X) 21 15 10 6 3 6 3 1

Table 4.1: Number of lines on singular cubic surfaces

we have, counted with multiplicity, six lines on X passing through p0. It is simple, for example
by using local equations for F (X) as we did in chapter one, to count the number of points of
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F (X) with their respective multiplicity. We obtain, in dependence of the type of (X, p0),

A1 :
∑

l∈F (X)

multl(F (X)) =
∑

l∈F (X)\Σ

multl(F (X)) +
∑
l∈Σ

multl(F (X))

= 15 + 2 · 6 = 27,

A2 :
∑

l∈F (X)

multl(F (X)) =
∑

l∈F (X)\Σ

multl(F (X)) +
∑
l∈Σ

multl(F (X))

= 9 + 3 · 6 = 27,

A3 :
∑

l∈F (X)

multl(F (X)) =
∑

l∈F (X)\Σ

multl(F (X)) +
∑
l∈Σreg

multl(F (X)) +
∑

l∈Σsing

multl(F (X))

= 5 + 4 · 4 + 6 = 27,

A4 :
∑

l∈F (X)

multl(F (X)) =
∑

l∈F (X)\Σ

multl(F (X)) +
∑
l∈Σreg

multl(F (X)) +
∑

l∈Σsing

multl(F (X))

= 2 + 3 · 5 + 10 = 27,

A5 :
∑

l∈F (X)

multl(F (X)) =
∑

l∈F (X)\Σ

multl(F (X)) +
∑
l∈Σreg

multl(F (X)) +
∑

l∈Σsing

multl(F (X))

= 0 + 2 · 6 + 15 = 27.

These multiplicities are explained as follows. By Theorem 1.32, F (X) admits a hypersurface
singularity of the same type as (X, p0) at every point of Σreg. But a hypersurface singularity of
type Ak inside C is just the point given by {xk+1 = 0} ⊂ C, that is, a fat point of multiplicity
k + 1. The multiplicities of these lines appear in the literature, see for example [Dol12] or
[Cay69], but are derived using different arguments. In order to understand how the multiplicity
of the points l0 ∈ Σsing ⊂ F (X) arises, we pose the following conjecture.

4.4 Conjecture. Let X ⊂ Pn be a cubic hypersurface with a unique singular point of ADE-type
T and let Γ be a variety of dimension n− 3 with a unique singular point of the same ADE-type
T . Then,

(F (X), l0) ∼= (Hilb2(Γ), γ0),

where l0 and γ0 denote the singular points of the respective singular loci.

We give a brief explanation on why one should expect this conjecture to hold true. First note
that this conjecture has been verified for cubic fourfolds by R. Yamagishi, see [Yam17a, Theorem
2.5]. His proof relies on methods from symplectic geometry and also on normality of F (X). By
analysing his proof, one finds that the arguments from symplectic geometry he uses, are mainly
used to avoid giving a precise description of the fibre π−1(γ0) where π : W → Hilb2(Γ) is a
resolution of singularities of Hilb2(Γ). But such a precise description is part of our results in
chapter three. Thus, as F (X) is normal for all cubic hypersurfaces X ⊂ Pn, if n ≥ 5, the
arguments from [Yam17a] could eventually be generalised to prove the conjecture for all n ≥ 5.
This would also generalise Theorem 1.32 to n ≥ 5 and thus establish it in general as we proved
it for n ≤ 4. Further evidence to the conjecture comes from the multiplicities of F (X) at the
singular point l0 of its singular locus, if X ⊂ P3 is a cubic surface. The multiplicities of the
Hilbert square of a fat point of multiplicity k + 1 are easy to compute and one obtains the one
one listed in Table 4.2.
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4.2 27 lines on singular cubic surfaces

k local equations inside Hilb2(C) ∼= C2 multiplicity at the origin

3 a3 + 2ab = a2b+ b2 = 0 6

4 a4 + 3a2b+ b2 = a3b+ 2ab2 = 0 10

5 a5 + 4a3b+ 3ab2 = a4b+ 3a2b2 + b3 = 0 15

Table 4.2: Multiplicity of the Hilbert square of {xk+1 = 0} ⊂ C at the singular point of its
singular locus

Now these multiplicities are precisely those obtained by the classical geometers, for example by
A. Cayley [Cay69], but which could not be explained intrinsically. A confirmation of Conjecture
4.4 at least for cubic surfaces provides such an intrinsic explanation of these multiplicities
without ever using that the sum of the multiplicities should be 27 in the end.
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Appendices

A. Source code for implementation in Python

In this section we give the source code we used to prove Theorem 1.29. We give brief explanations
of what the code is doing. The input lines, marked by ”In”, can be copied into a Python console
and executed, provided that all necessary packages have been installed. We also provide the
respective output and added line-breaks for the purpose of presenting it in this thesis. The
source code for our module ”procs” loaded at the beginning is given below.
We begin by importing modules and libraries we are going to use.

In [1]: import sympy as sp

import procs

import math

import time

sp.init_printing()

Now initialise all symbols we are going to use. These are the variables z1, . . . , zn, x2, . . . , xn,
y2, . . . , yn and also all coefficients of the defining equation f for the cubic hypersurface X. Note
that there are symbols introduced which remain unused. This is to keep the code easier to read.
Any number of variables can be specified below, we took, as an example, n = 4.

In [2]: numberOfVars =4 #Can be adjusted

dz = dict(('z_%d'%k, sp.symbols('z_%d'%k)) for k in range(numberOfVars+1))

da = dict(('a_%d'%k, sp.symbols('a_%d'%k)) for k in range(numberOfVars+1))

db = dict(('b_%d'%k, sp.symbols('b_%d'%k)) for k in range(numberOfVars+1))

dc = dict(('c_%d'%k, sp.symbols('c_%d'%k)) for k in range(numberOfVars+1))

dd = dict(('d_%d'%k, sp.symbols('d_%d'%k)) for k in range(numberOfVars+1))

de = dict(('e_%d'%k, sp.symbols('e_%d'%k)) for k in range(numberOfVars+1))

df = dict(('f_%d'%k, sp.symbols('f_%d'%k)) for k in range(numberOfVars+1))

locals().update(dz)

locals().update(da)

locals().update(db)

locals().update(dc)

locals().update(dd)

locals().update(de)

locals().update(df)

We declare some polynomials which are used to build the defining equation f .
In [3]: A,B,C,D,E,F,Q=0,0,0,0,0,0,0

lz=list(dz.values())

la=list(da.values())

lb=list(db.values())

lc=list(dc.values())

ld=list(dd.values())

le=list(de.values())

lf=list(df.values())

for ind in range(4,(numberOfVars+1)):

Q+=lz[ind]**2

A+=la[ind]*lz[ind]

B+=lb[ind]*lz[ind]

C+=lc[ind]*lz[ind]

D+=ld[ind]*lz[ind]

E+=le[ind]*lz[ind]

F+=lf[ind]*lz[ind]

Now declare the function f .
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In [4]: f = z_0*(z_1*z_2+Q)+b_2*z_2**3+a_3*z_1**2*z_3+b_3*z_2**2*z_3+c_1*z_1*z_3**2+c_2*z_2*z_3**2+z_1**2*A\

+z_2**2*B+z_1*z_3*E+z_2*z_3*F+z_3**2*C+c_3*z_3**3

We check the definition of f .
In [5]: f

Out[5]: a3z21z3 + a4z21z4 + b2z32 + b3z22z3 + b4z22z4 + c1z1z23 + c2z2z23 + c3z33 + c4z23z4 + e4z1z3z4 + f4z2z3z4 + z0
(
z1z2 + z24

)
The following lines computes defining equations for the Fano scheme of lines on X = {f = 0}.

In [6]: F=f.expand()

F1,F2,F3,F4=0,0,0,0

#Coordinates for the Grassmannian

dx = dict(('x_%d'%k, sp.symbols('x_%d'%k)) for k in range(numberOfVars+1))

dy = dict(('y_%d'%k, sp.symbols('y_%d'%k)) for k in range(numberOfVars+1))

locals().update(dx)

locals().update(dy)

lx=list(dx.values())

ly=list(dy.values())

#

L= sp.Symbol('L')
M= sp.Symbol('M')
F=F.subs(lz[0],L)

F=F.subs(lz[1],M)

#

for ind in range(2,numberOfVars+1):

F=F.subs(lz[ind],L*lx[ind]+M*ly[ind])

#

F1 = procs.degree_k_terms(sp.poly(F,L),3,[L])

F2 = procs.degree_k_terms(sp.poly(F,L),2,[L])

F3 = procs.degree_k_terms(sp.poly(F,M),2,[M])

F4 = procs.degree_k_terms(sp.poly(F,M),3,[M])

#Remove the temporary variables L,M and turn polynomials into polynomials

#in x,y

F1 = sp.poly(F1.subs(L,1),lx+ly)

F2 = sp.poly(F2.subs({L:1,M:1}),lx+ly)

F3 = sp.poly(F3.subs({L:1,M:1}),lx+ly)

F4 = sp.poly(F4.subs(M,1),lx+ly)

As we explained in chapter one, we can set the variables y4, . . . , yn to zero for our purposes.
In [7]: for var in ly[4:]:

F1=F1.subs(var,0)

F2=F2.subs(var,0)

F3=F3.subs(var,0)

F4=F4.subs(var,0)

#assure that these functions are still defined as functions of y_2,...,y_n

F1=sp.poly(F1,lx+ly)

F2=sp.poly(F2,lx+ly)

F3=sp.poly(F3,lx+ly)

F4=sp.poly(F4,lx+ly)

In order to perform our algorithm, we have to specify a bound. We have taken here µ = 5 but
this number may be adjusted to compute other cases.

In [8]: mu = 5

bound = math.ceil((mu+1)/3)+1

We normalise the linear terms of F2, F3 and F4, and begin by changing the 1-jet of F3 to y2
and normalise the coefficient of y2, if necessary.

In [9]: if procs.degree_k_terms(F3,1,lx+ly)!=ly[2]:

#To make the linear term a multiple of y_2

sub = procs.degree_k_terms(F3,1,lx+ly)

F1=sp.poly(procs.expr_from_poly(F1,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub-ly[2],lx+ly)).expand(),lx+ly)

F2=sp.poly(procs.expr_from_poly(F2,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub-ly[2],lx+ly)).expand(),lx+ly)

F3=sp.poly(procs.expr_from_poly(F3,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub-ly[2],lx+ly)).expand(),lx+ly)

F4=sp.poly(procs.expr_from_poly(F4,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub-ly[2],lx+ly)).expand(),lx+ly)

#To change the factor of y_2 to one

sub = procs.degree_k_terms(F3,1,lx+ly)

F1=sp.poly(procs.expr_from_poly(F1,lx+ly)

.subs(ly[2],1/(sp.div(sub,ly[2])[0])*ly[2]),lx+ly)
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F2=sp.poly(procs.expr_from_poly(F2,lx+ly)

.subs(ly[2],1/(sp.div(sub,ly[2])[0])*ly[2]),lx+ly)

F3=sp.poly(procs.expr_from_poly(F3,lx+ly)

.subs(ly[2],1/(sp.div(sub,ly[2])[0])*ly[2]),lx+ly)

F4=sp.poly(procs.expr_from_poly(F4,lx+ly)

.subs(ly[2],1/(sp.div(sub,ly[2])[0])*ly[2]),lx+ly)

Now change the dµ+1
3 e-jet of F3 to y2.

In [10]: count =2

while procs.jet(F3,bound,lx+ly)!=ly[2]:

print('---------- step: '+str(count-1)+'/'+str(bound-1))
start = time.time()

#Calculate the terms in F3 of order count

sub = sp.poly(procs.degree_k_terms(F3,count,lx+ly),lx+ly)

F1=sp.poly(procs.expr_from_poly(F1,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

F2=sp.poly(procs.expr_from_poly(F2,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

F3=sp.poly(procs.expr_from_poly(F3,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

F4=sp.poly(procs.expr_from_poly(F4,lx+ly)

.subs(ly[2],ly[2]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

#we can cut off terms that will never be used

#note that we will be working with F1 in the end and need all terms

#for this polynomial

F1=sp.poly(procs.jet(F1,mu+1,lx+ly),lx+ly)

F2=sp.poly(procs.jet(F2,bound,lx+ly),lx+ly)

F3=sp.poly(procs.jet(F3,bound,lx+ly),lx+ly)

F4=sp.poly(procs.jet(F4,bound,lx+ly),lx+ly)

count+=1

end = time.time()

print('---------- done! ('+str(end-start)+'s)')

---------- step: 1/2

---------- done! (0.638685941696167s)

---------- step: 2/2

---------- done! (14.569494009017944s)

We can now eliminate the variable y2.
In [11]: F1=sp.poly(F1.subs(ly[2],0),lx+ly)

F2=sp.poly(F2.subs(ly[2],0),lx+ly)

F4=sp.poly(F4.subs(ly[2],0),lx+ly)

We continue with F2.
In [12]: count =2

while procs.jet(F2,bound,lx+ly)!=lx[2]:

print('---------- step: '+str(count-1)+'/'+str(bound-1))
start = time.time()

#Calculate the terms in F2 of order count

sub = sp.poly(procs.degree_k_terms(F2,count,lx+ly),lx+ly)

F1=sp.poly(procs.expr_from_poly(F1,lx+ly)

.subs(lx[2],lx[2]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

F2=sp.poly(procs.expr_from_poly(F2,lx+ly)

.subs(lx[2],lx[2]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

F4=sp.poly(procs.expr_from_poly(F4,lx+ly)

.subs(lx[2],lx[2]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

#we can cut off terms that will never be used

F1=sp.poly(procs.jet(F1,mu+1,lx+ly),lx+ly)

F2=sp.poly(procs.jet(F2,bound,lx+ly),lx+ly)

F4=sp.poly(procs.jet(F4,bound,lx+ly),lx+ly)

count+=1

end = time.time()

print('---------- done! ('+str(end-start)+'s)')

---------- step: 1/2

---------- done! (0.4918539524078369s)

---------- step: 2/2

---------- done! (13.766942977905273s)

In [13]: F1=sp.poly(F1.subs(lx[2],0),lx+ly)

F4=sp.poly(F4.subs(lx[2],0),lx+ly)

Finally, we bring F4 to the desired form.
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In [14]: if procs.degree_k_terms(F4,1,lx+ly)!=ly[3]:

#normalisation is required

sub = procs.degree_k_terms(F4,1,lx+ly)

F1=sp.poly(procs.expr_from_poly(F1,lx+ly)

.subs(ly[3],ly[3]-procs.expr_from_poly(sub-ly[3],lx+ly)).expand(),lx+ly)

F4=sp.poly(procs.expr_from_poly(F4,lx+ly)

.subs(ly[3],ly[3]-procs.expr_from_poly(sub-ly[3],lx+ly)).expand(),lx+ly)

#

sub = procs.degree_k_terms(F4,1,lx+ly)

F1=sp.poly(procs.expr_from_poly(F1,lx+ly)

.subs(ly[3],1/(sp.div(sub,ly[3])[0])*ly[3]),lx+ly)

F4=sp.poly(procs.expr_from_poly(F4,lx+ly)

.subs(ly[3],1/(sp.div(sub,ly[3])[0])*ly[3]),lx+ly)

In [15]: count =2

while procs.jet(F4,bound,lx+ly)!=ly[3]:

start = time.time()

print('---------- step: '+str(count-1)+'/'+str(bound-1))
#Calculate the terms in F4 of order count

sub = sp.poly(procs.degree_k_terms(F4,count,lx+ly),lx+ly)

F1=sp.poly(procs.expr_from_poly(F1,lx+ly)

.subs(ly[3],ly[3]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

F4=sp.poly(procs.expr_from_poly(F4,lx+ly)

.subs(ly[3],ly[3]-procs.expr_from_poly(sub,lx+ly)).expand(),lx+ly)

#we can cut off terms that will never be used

F1=sp.poly(procs.jet(F1,mu,lx+ly),lx+ly)

F4=sp.poly(procs.jet(F4,bound,lx+ly),lx+ly)

count+=1

end = time.time()

print('---------- done! ('+str(end-start)+'s)')

---------- step: 1/2

---------- done! (0.30374884605407715s)

---------- step: 2/2

---------- done! (1.2940187454223633s)

In [16]: F1=sp.poly(F1.subs(ly[3],0),lx+ly)

We reduced ourselves to computing the coefficient conditions for the following polynomial.
In [17]: procs.expr_from_poly(F1,lx)

Out[17]: a3c22x
5
3 + 2a3c2f4x43x4 + a3f24x

3
3x

2
4 + a4c22x

4
3x4 + 2a4c2f4x33x

2
4 + a4f24x

2
3x

3
4 + b3c21x

5
3 + 2b3c1e4x43x4 + b3e24x

3
3x

2
4 + b4c21x

4
3x4

+2b4c1e4x33x
2
4 + b4e24x

2
3x

3
4 − c1c2x43 − c1f4x33x4 − c2e4x33x4 + c3x33 + c4x23x4 − e4f4x23x24 + x24

To perform the algorithm from the proof of the Generalised Morse Lemma, we need to detect
the non-squared variable in the above.

In [18]: quadratic_part=procs.expr_from_poly(procs.degree_k_terms(F1,2,lx+ly),lx+ly)

for ind in range(3,len(lx)):

if quadratic_part-lx[ind]**2!=0:

var = lx[ind]

break

residual_part = procs.expr_from_poly(F1,lx)-quadratic_part

The next loop performs the algorithm from the proof of the Generalised Morse Lemma to bring
F1 to the normal form of a singularity of type Ak.

In [19]: count = 0

start=time.time()

while count != mu:

residual_part = procs.expr_from_poly(F1,lx)-quadratic_part

g=[]

for ind in range(len(lx)):

if lx[ind] == var:

g.extend([0])

else:

g.extend([procs.expr_from_poly(procs.g_ind(sp.poly(residual_part,lx),ind,lx),lx)])

residual_part-=lx[ind]*g[ind]

for ind in range(len(lx)):

if g[ind] != 0:

F1=procs.jet(sp.poly(F1.subs(lx[ind],lx[ind]-sp.Rational(1/2)*g[ind]).expand(),lx),mu,lx)

F1=sp.poly(F1,lx)

count+=1

F1=sp.poly(F1,lx)

end=time.time()

print('successfully performed the Generalised Morse Lemma ('+str(end-start)+'s)')

successfully performed the Generalised Morse Lemma (8.086852073669434s)
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We can now read off the conditions to admit a singularity of Milnor number ≤ µ.
In [20]: F1

Out[20]: Poly

((
a3c22 + b3c21 + c1c4f4

2
+ c2c4e4

2

)
x53 +

(
−c1c2 −

c24
4

)
x43 + c3x33 + x24, x0, x1, x2, x3, x4,

domain = Q [a3, b3, c1, c2, c3, c4, e4, f4]

)
Now compute the coefficient conditions for f . To do so, we pass to the standard affine chart
z0 6= 0 containing the singular point p0.

In [21]: lz_aff = lz[1:]

g = f.subs(z_0,1)

In [22]: g=procs.gen_Morse2(sp.poly(g,lz_aff),mu,lz_aff)

the weight has to be put on z_3

1

2

3

4

5

Successfully performed the Generalised Morse Lemma (48.67490100860596s)

In [23]: g

Out[23]: Poly

(
z1z2 +

(
a3c22 + b3c21 + c1c4f4

2
+ c2c4e4

2

)
z53 +

(
−c1c2 −

c24
4

)
z43 + c3z33 + z24 , z1, z2, z3, z4,

domain = Q [a3, b3, c1, c2, c3, c4, e4, f4]

)
The source code for the module ”procs” is the following.
"""

@author: Tobias Heckel

"""

import sympy as sp

import math

import time

def jet(F, mu, lz):

#monomials wrt z of degree mu

erg=sp.poly(0,lz)

mons = F.monoms()

for ind in range(len(mons)):

if sum(mons[ind])<=mu:

tmp=sp.poly(1,lz)

for ind2 in range(len(lz)):

tmp=tmp*lz[ind2]**mons[ind][ind2]

erg+=F.as_dict()[mons[ind]]*tmp

return erg.expand()

def degree_k_terms(F,mu,lz):

#monomials wrt z of degree mu

erg=sp.poly(0,lz)

mons = F.monoms()

for ind in range(len(mons)):

if sum(mons[ind])==mu:

tmp=sp.poly(1,lz)

for ind2 in range(len(lz)):

tmp=tmp*lz[ind2]**mons[ind][ind2]

erg+=F.as_dict()[mons[ind]]*tmp

return erg.expand()

def fano(F, lz):

F=F.expand()

F1,F2,F3,F4=0,0,0,0

numberOfVars = len(lz)

#Coordinates for the Grassmannian

dx = dict(('x_%d'%k, sp.symbols('x_%d'%k)) for k in range(numberOfVars))

dy = dict(('y_%d'%k, sp.symbols('y_%d'%k)) for k in range(numberOfVars))

globals().update(dx)

globals().update(dy)

lx=list(dx.values())

ly=list(dy.values())

#
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L= sp.Symbol('L')
M= sp.Symbol('M')
F=F.subs(lz[0],L)

F=F.subs(lz[1],M)

#

for ind in range(2,numberOfVars):

F=F.subs(lz[ind],L*lx[ind]+M*ly[ind])

#

F1 = degree_k_terms(sp.poly(F,L),3,[L])

F2 = degree_k_terms(sp.poly(F,L),2,[L])

F3 = degree_k_terms(sp.poly(F,M),2,[M])

F4 = degree_k_terms(sp.poly(F,M),3,[M])

#Remove the temporary variables L,M and make polynomials into polynomials

#in x,y

F1 = sp.poly(F1.subs(L,1),lx+ly)

F2 = sp.poly(F2.subs({L:1,M:1}),lx+ly)

F3 = sp.poly(F3.subs({L:1,M:1}),lx+ly)

F4 = sp.poly(F4.subs(M,1),lx+ly)

return (F1,F2,F3,F4)

#returns the expression of a polynomial

def expr_from_poly(F,lz):

erg=0

if F==sp.poly(0,lz): return erg

mons = F.monoms()

mu=max([sum(r) for r in mons])

for ind in range(len(mons)):

if sum(mons[ind])<=mu:

tmp=1

for ind2 in range(len(lz)):

tmp=tmp*lz[ind2]**mons[ind][ind2]

erg+=F.as_dict()[mons[ind]]*tmp

return erg.expand()

#computation of the g_i polynomials from the proof

#of the Generalised Morse Lemma

def g_ind(pol,ind,lz):

monoms = pol.monoms()

erg=sp.poly(0,lz)

for mon in monoms:

if mon[ind]!=0:

#get polynomial but lower exponent ind by one

tmp=sp.poly(1,lz)

for ind2 in range(len(mon)):

if ind == ind2:

tmp=tmp*lz[ind2]**(mon[ind2]-1)

else:

tmp=tmp*lz[ind2]**mon[ind2]

erg+=pol.as_dict()[mon]*tmp

return erg

#applies the Generalised Morse Lemma to poly

#up to the specified bound

#NOTE: this procedure assumes that the quadratic part is a sume of squares

def gen_Morse(poly, bound, lz):

start = time.time()

count = 0

#compute the quadratic and residual part

quadratic_part=expr_from_poly(degree_k_terms(poly,2,lz),lz)

for ind in range(0,len(lz)):

if degree_k_terms(sp.poly(quadratic_part,lz[ind]),2,[lz[ind]])==0:

var = lz[ind]

break

residual_part = expr_from_poly(poly,lz)-quadratic_part

print('the weight has to be put on '+str(var))

while count != bound+1:

residual_part = expr_from_poly(poly,lz)-quadratic_part

g=[]

for ind in range(len(lz)):#lx[ind]!=var needs to be assured!

if lz[ind] == var:

g.extend([0])

else:
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g.extend([expr_from_poly(g_ind(sp.poly(residual_part,lz),ind,lz),lz)])

residual_part-=lz[ind]*g[ind]

#now comes the change of coordinates

for ind in range(len(lz)):

if g[ind] != 0:

poly=jet(sp.poly(poly.subs(lz[ind],lz[ind]-sp.Rational(1/2)*g[ind]).expand(),lz),bound+1,lz)

poly=sp.poly(poly,lz)

count+=1

print(count)

end = time.time()

print('Successfully performed the Generalised Morse Lemma ('+str(end-start)+'s)')
return sp.poly(poly,lz)

#applies the Generalised Morse Lemma to poly

#up to the specified bound

#NOTE: this procedure assumes that the quadratic part equals

#z_1z_2+sum of squares of other variables

def gen_Morse2(poly, bound, lz):

start = time.time()

count = 0

#compute the quadratic and residual part

quadratic_part=expr_from_poly(degree_k_terms(poly,2,lz),lz)

for ind in range(2,len(lz)):

if degree_k_terms(sp.poly(quadratic_part,lz[ind]),2,[lz[ind]])==0:

var = lz[ind]

break

residual_part = expr_from_poly(poly,lz)-quadratic_part

print('the weight has to be put on '+str(var))

while count != bound:

residual_part = expr_from_poly(poly,lz)-quadratic_part

g=[]

for ind in range(len(lz)):#lx[ind]!=var needs to be assured!

if lz[ind] == var:

g.extend([0])

else:

g.extend([expr_from_poly(g_ind(sp.poly(residual_part,lz),ind,lz),lz)])

residual_part-=lz[ind]*g[ind]

#now comes the change of coordinates

for ind in range(len(lz)):

if g[ind] != 0:

if ind == 0:

poly=jet(sp.poly(poly.subs(lz[ind],lz[ind]-g[ind+1]).expand(),lz),bound,lz)

poly=sp.poly(poly,lz)

elif ind ==1:

poly=jet(sp.poly(poly.subs(lz[ind],lz[ind]-g[ind-1]).expand(),lz),bound,lz)

poly=sp.poly(poly,lz)

else:

poly=jet(sp.poly(poly.subs(lz[ind],lz[ind]-sp.Rational(1/2)*g[ind]).expand(),lz),bound,lz)

poly=sp.poly(poly,lz)

count+=1

print(count)

end = time.time()

print('Successfully performed the Generalised Morse Lemma ('+str(end-start)+'s)')
return sp.poly(poly,lz)
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[PWZ96] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A = B. With foreword by
Donald E. Knuth. Wellesley, MA: A. K. Peters, 1996.

94



B. Acknowledgements

[Pyt] Python. https://www.python.org.

[Ran16] Ziv Ran. Structure of the cycle map for Hilbert schemes of families of nodal curves.
Isr. J. Math., 215(2):669–711, 2016.

[RIS] RISCErgoSum. https://www3.risc.jku.at/research/combinat/software/

ergosum/index.html.

[Sch70] H. W. Schuster. Zur Theorie der Deformationen kompakter komplexer Räume. In-
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[Seg88] C. Segre. Sulle varietà cubiche dello spazio a quattro dimensioni e su certi sistemi di
rette e certe superficie dello spazio ordinario. Torino Mem. (2) XXXIX. 48 S (1888).,
1888.
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