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health monitoring of tunnel structures
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Abstract
Advanced robotic systems will encounter a rapid breakthrough opportunity and become increasingly important, especially
with the aid of the accelerated development of artificial intelligence technology. Nowadays, advanced robotic systems are
widely used in various fields. However, the development of artificial intelligence-based robot systems for structural health
monitoring of tunnels needs to be further investigated, especially for data modeling and intelligent processing for noises.
This research focuses on integrated B-spline approximation with a nonparametric rank method and reveals its advantages
of high efficiency and noise resistance for the automatic health monitoring of tunnel structures. Furthermore, the root-
mean-square error and time consumption of the rank-based and Huber’s M-estimator methods are compared based on
various profiles. The results imply that the rank-based method to model point cloud data has a comparative advantage in
the monitoring of tunnel, as well as the large-area structures, which requires high degrees of efficiency and robustness.
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Introduction

Intelligent robotic systems will achieve significant devel-

opment utilizing the rapid breakthrough of artificial intel-

ligence (AI) technology and it will become increasingly

important in various fields.

Background

Nowadays, advanced robotic systems and AI-based

approaches are being investigated in many fields, con-

stantly integrating and changing human lives profoundly,

especially in the field of intelligent transportation. For

example, autonomous fusion of vision and laser based on

convolutional neural network (CNN) was applied for vehi-

cle environment1; a hardware platform was employed for

an intelligent vehicle based on a driving brain2; multi-view

clustering was studied based on graph regularized nonne-

gative matrix factorization for object recognition3; and a

framework was investigated for road traffic risk assessment

with a prediction model.4 Vision-based measurement is an

important input for skills of robots, such as real-time object

recognition,5 simultaneous localization and mapping,6 and

guidance and control of vehicles7. It is noteworthy that

vision-based robotic systems are gaining increasing atten-

tion for health monitoring of large-scale structures like

tunnels and rails, where one important issue is to detect

automatically deformations and damages of the structures

monitored. This requires not only the recognition and
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localization of object but also the refined modeling

of structures indicating the change of structure itself

with time.

Intelligent modeling which are robust, highly adaptive,

and reliable show great prospects in the field of structural

health monitoring. Finotti et al.8 employed artificial neural

networks and support vector machines to model structural

changes and suggested the adoption of statistical indicators

for structural alteration assessment. The effectiveness and

computational cost of various AI-based models were inves-

tigated for structural damage detection.9 A support vector

machine algorithm was developed based on point clouds

for the semantic analysis of spatial design support and

security domains.10 The AI-based modeling and interpreta-

tion from point cloud data is applied in monitoring roads,

buildings, and so on.11 Concerning tunnel modeling based

on point cloud data, high-accuracy models mainly rely on

removing the noisy and disturbing points with filtering

strategies. For example, Schotte et al.12 used commercial

software to discard noisy points before model construction.

Delaloye et al.13 adopted averaging method to remove the

noises beforehand. Arastounia14 refined tunnel models by

residual analysis and Baarda’s data snooping method to

eliminate outliers. These filtering methods need extra time

consumption and human labor as well as expertise. The

issue of intelligent and robust point cloud modeling for the

structural health monitoring of tunnels is still challenging.

Motivation

In this study, terrestrial laser scanning (TLS) technology,

which is a noncontact spatial data acquisition method with

high precision, speed, and resolution, characterizes the tun-

nel structures using massive 3D points. High-accuracy

model reconstruction of the tunnel is carried out based on

the 3D points. Considering the noise and uncertainties

which could result in the instability of the 3D modeling,

the rank-based method (RBM) has been adopted to obtain

the most robust model parameters. Reliable structural

health monitoring relies on sufficient data collection to

capture the status of the structures.

The statistical learning theory has been developed as a

branch of machine learning since the last century and has

made a great contribution to AI theories. This article

focuses on AI-enabled structural health monitoring with

laser scanning technology and the nonparametric statistic

method, which could improve the robustness, reliability,

and efficiency of geometric modeling. We aim at a geo-

metric inspection of tunnel structures, which contain, for

example, noises, data gaps, and disturbing points; there-

fore, the prompt and accurate assessment of the tunnel

structures is challenging. In this article, the rank-based

model is integrated into geometric parametrization to con-

struct efficient and accurate geometric models which could

be applied to recognize deformations and damages.

The TLS technology performs in an area-oriented mea-

surement manner, offering full-field measurement data and

acquiring more comprehensive structural information to

compare with traditional single-point measurement tech-

nology. The theories and methods of TLS have been widely

studied to solve the assignments of the structural health

monitoring which is employed for various monitoring

tasks, for example, tunnels, bridges, and rails.15–22 The

TLS combined with robotic systems have great prospects,

especially for application in the area of intelligent health

monitoring.23–29

This article is structured as follows: the first section

gives an introduction of the research background and moti-

vation; the second section presents the mathematical meth-

ods of robust modeling using B-spline surface; the third

section describes the details of data used in this study,

including simulated data and tunnel measurement data; the

fourth and fifth sections show the analysis results of the

simulated and measurement data; lastly, the sixth section

draws conclusion of the study.

Robust modeling with B-spline surface

The B-spline curve approximation, which is defined as

equation (1),30 is applied for geometric modeling based

on point cloud data

CðuÞ ¼
Xn

i¼0

Ni:pðuÞPi; 0 � u � 1 ð1Þ

where C(u) is corresponding to a B-spline curve defined on

parameter value u, Pi is the nþ 1 control point, and Ni;pðuÞ
is the pth-degree B-spline basis function defined on knot

vector. The B-spline surface is defined as equation (2)30

which reconstructs the 3D surface model describing the

real geometry

Sðu; vÞ ¼
Xn

i¼0

Xm

j¼0

Ni;pðuÞNj;qðvÞPi;j ð2Þ

where the Sðu; vÞ is the B-spline surface points at fixed

ðu; vÞ parameter values, Ni;pðuÞ and Nj;qðvÞ are the basis

functions in two directions separately, and the Pi;j is the

bidirectional net of control points. B-spline models can be

expressed in the form of a linear model

lþ r ¼ Ab ð3Þ

where l represents the observation vector consisting of the

measure point coordinates, r represents the vector of resi-

duals, A means the design matrix assembled with basis

functions, and b is the parameter vector consisting of the

unknown control points. The well-known least squares

(LS) solution

b̂ LS ¼ ðATAÞ�1
ATl ð4Þ

is obtained by minimizing the L2-norm

2 International Journal of Advanced Robotic Systems



QLSðbÞ ¼
XN

i¼1

r2
i ð5Þ

of residual ri, where N is the total number of residuals. The

RBM is used in this article, which is shown in equations (6)

to (9).31 The RBM minimizes the linear combination of ri

with the aid of Wilcoxon score

a
�

RðriÞ
�
¼

ffiffiffiffiffi
12
p

� RðriÞ
N þ 1

� 1

2

� �
ð6Þ

where RðriÞ is the rank of ri among the total N residuals.

Then the minimization function is formed as

QRðbÞ ¼
XN

i¼1

a
�

RðriÞ
�

ri ð7Þ

In order to solve the minimizing function regarding b,

the iteratively reweighted LS method is employed. The

initial solution b̂
ð0Þ
R equals the LS estimation b̂ LS, and the

improved solution in kth iteration b̂
ðkÞ
R is achieved with

b̂
ðkÞ
R ¼ b̂

ðk�1Þ
R þ

�
ATPðkÞA

��1

ATPðkÞr̂
ðkÞ
R ð8Þ

In equation (8), the weight matrix PðkÞ is a diagonal

matrix consisting of p
ðkÞ
i after

p
ðkÞ
i ¼

ffiffiffiffiffi
12
p

�
R
�

r̂
ðkÞ
R;i � a0

�
N þ 1

� 1

2

0
@

1
A,�

r̂
ðkÞ
R; i � a0

�
; i ¼ 1; . . . ; N

ð9Þ

where the a0 is the median of r̂
ðkÞ
R . Convergence condition

is b̂
ðkÞ � b̂ ðkþ1Þ � t, where t is set as 10�6, and the maxi-

mum iteration time is limited to 1000.

Data introduction

Simulated data and profile measurements are investigated

in this article where noises of normal and Rayleigh distri-

bution are considered in comparing the B-spline modeling

performance of RBM, Huber’s M-estimator (HUB), and LS

method.

Simulation data

In the simulated data, normally distributed noise is gener-

ated to test the performance of robust modeling method.

Ground truth points consisting of x and y coordinates are

computed after cosine equation (10)

y ¼ 10 cosð0:3xþ 5Þ ð10Þ

The range of x coordinates is [1, 7.5], so that the shape

generated is about 6.5 m of width and 4.5 m of height,

which is comparable to the size of the tunnel profiles.

Thereafter, zero-mean normal distribution noise is added

to the ground truth data. One set of simulated data with

normally distributed noise is presented in Figure 1.

The blue curve is the ground truth and the black points

are the generated points with normally distributed noise in

Figure 1 where standard deviation s is subject to normal

distribution and the number of points N is 500.

More data are generated with normally distributed noise

and listed in Table 1, where DA and DB are the data sets

generated, given specified mean value (denoted by mean) 0

mm, standard deviation (denoted by s) of the normal distri-

bution, and number of points generated. The range of s is set

referring to the range noise of the TLS instruments, and the

number of points is chosen considering the time and effi-

ciency of the tunnel data approximations. DA has 500 points

and varying s in the range [1–100] mm in steps of 2 mm, and

DB has a s of 6 mm and a varying number of points in the

range [50–500] in steps of 10.

In order to compare the noise resistance of RBM, more

complex noise of Rayleigh distribution is simulated whose

probability density function is given by equation (11)

f ðxÞ ¼ x

s2
e
� x2

2s2 ; x > 0 ð11Þ

It could be synthetized based on a uniformly distributed

random matrix through equation (12)

z ¼ 0:2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:03 In

�
1� Uð0; 1Þ

�r
ð12Þ

where U(0,1) is the uniformly distributed noise whose

mean is 0 and variance is 1.

Tunnel profile

The rank-based B-spline approximation is tested on various

data sets of tunnel profiles. The scanned point cloud data

Figure 1. Simulated data with normally distributed noise.

Table 1. Overview of generated data.

Mean [mm] s [mm] Number of points

DA 0 [1–100] 500
DB 0 6 [50–500]
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containing approximately 10 million points are shown

in Figure 2, where the green color indicates that the points

have higher intensities of laser reflectivity and the blue

color corresponds to a lower intensity. The point cloud data

are preprocessed in MATLAB to extract equal-distance

100 profiles, where it is assured that the points in each

profile are coplanar.

Overview of the tunnel data sets is described by range

noise and the total number of points. The range noise is

related closely to the intensity by32

sd ¼ a � intensityb ð13Þ

Here a and b are estimated parameters of a specific

laser scanner. Using the laser scanner Z+F IMAGER 5006

manufactured by Zoller+Fröhlich company, we have the

parameter a ¼ 1.617 m and the parameter b ¼ �0.571.32

A figure of range noise is presented in Figure 3(a), where

the X-axis is intensity data and the Y-axis is the range noise

computed by equation (13). It is hinted in Figure 3(a) that the

range noise decreases with increasing intensity value. The

mean intensity value of each extracted profile is shown as

the blue line in Figure 3(b), where the X-axis is the tunnel

profile sequence along the central axis of the tunnel. It is

noticeable through Figure 3(a) and (b) that the range noise in

the middle part of the tunnel could be as small as several

millimeters, but it increased to about 40 mm at the two ends

of the tunnel. Another metrics of the data is the total number

of points. Because all the tunnel profiles are of the same

scale, the larger number of points means the higher point

density. The orange line in Figure 3(b) indicates the number

and density of points are very high in the middle part and

decrease sharply toward the two ends of the tunnel. It is

hinted that there is a high percentage of sparse data which

will challenge the approximation tasks.

Simulation results

Criteria of accuracy assessment

Root-mean-square error (RMSE) was computed as a quan-

titative metric of quality to acquire a rigorous accuracy

assessment. Suppose there is a data set of M denoised

points QD
j ðj ¼ 1; . . . ;MÞ corresponding to a raw point

cloud data set. Here, the QD of data generated is the ground

truth point, and the QD of tunnel profile data is extracted

manually in software CloudCompare by means of a

segment command. Meanwhile, the B-spline curve

approximated with the raw point cloud was interpolated

to 1000 discrete points Y k ðk ¼ 1; . . . ; 1000Þ. The point

in Y with the least Euclidean distance to the jth

point QD
j ðj ¼ 1; . . . ;MÞ is denoted by Q̂jðj ¼ 1; . . . ;M ;

Q̂j 2 Y Þ. The RMSE is computed after equation (14),

where jjQD
j � Q̂jjj is the Euclidean distance between QD

j

and Q̂j.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
j¼1

jjQD
j � Q̂jjj2

M

vuuuut
ð14Þ

Simulation data analysis results

The simulated data with normally distributed noise are

analyzed and the results show similar trends, and thus one

result corresponding to Figure 1 is selected as a represen-

tative. B-spline estimation with RBM, HUB, and LS are

investigated and compared based on the simulated data.

The result of RMSE for the simulated data with varying

s is presented in Figure 4.

Figure 2. 3D point cloud data tunnel with TLS measurement.
TLS: terrestrial laser scanning.

Figure 3. Tunnel profile description: (a) relation of range noise
and intensity and (b) profile intensity and number of points.
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Figure 4 shows the RMSE of three approximation meth-

ods on the simulated data, where the X-axis is the s with a

range of [1, 100] mm and Y-axis is the RMSE distribution.

It is observed that the RBM result with a green line is

mainly between the HUB and LS result. As we expected

a lower RMSE for a better approximation, the RBM

approximation is mostly superior to the HUB approxima-

tion on the generated data contaminated by zero-mean nor-

mally distributed noises.

Considering the complexity of the actual project, Ray-

leigh distributed noise is also involved to judge the super-

iority and advantage of the RBM and HUB method which

is compared and presented in Figure 5.

It is observed in Figure 5 that the RBM is obviously

better than the Huber method when the point cloud data

contain more complex noise such as Rayleigh noise.

Tunnel analysis results and discussion

Three profiles are adopted to compare RMSE and time

consumption in Table 2.

The RBM-based method is tested with tunnel profile

data sets and the RMSE and computational cost are com-

pared among the RBM, HUB, and LS, which are listed in

Table 2. According to Table 2, the RBM and HUB methods

have smaller RMSE than the LS method, which can both

Figure 4. RMSE for the simulated data with varying s. RMSE: root-mean-square error.

Figure 5. RMSE with Rayleigh distributed noise. RMSE: root-mean-square error.
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improve significantly the robustness of the model. Further-

more, compared with the HUB method, the RBM method

has the advantage in terms of time consumption which can

be observed from the bold font in Table 2. The computer

has a 3.4 GHz CPU and 8.0 GB of RAM, the version of

MATLAB adopted is R2017a. According to Table 2, the

superiority is in turn HUB, RBM, and LS method in terms

of RMSE, but it is in turn LS, RBM, and HUB method in

terms of time consumption. It reveals that the Huber

method may obtain better robustness, but the RBM gain

lower time-consuming performance than Huber method.

Therefore, it is implied that the RBM has a comparative

advantage in the large projects, especially for high require-

ments of time-consuming and at the same time need to

consider the robustness.

According to the comparative analysis of RBM, HUB,

and LS methods, the RBM is more suitable for the higher

requirement of efficiency and robustness, especially for

the large-scale engineering projects, such as tunnel struc-

tures. Therefore, the RBM is adopted to optimize the sur-

face approximation of tunnel structures. The B-spline

surface modeling is presented in Figure 6, where the yellow

surface corresponds to the rank-based B-spline surface, the

blue surface is the LS-based B-spline surface, and the red

point denotes point cloud data. The black curves are the

approximated curves of the netted points in two directions,

which are illustrated in the bottom left of Figure 6. The

point cloud data were originally scattered, which may cause

disorder in the B-spline surface if adopted directly. In order

to obtain the smooth surface model of tunnel structures, the

points are sampled in two directions: one is along the tunnel

axis and the other is in the plane of the tunnel profile.

A novel sampling method is proposed based on a ver-

tical rectangular network which divides the tunnel into two

symmetrical parts to obtain the sample points intelligently.

The two sides of the rectangular are marked with red

arrows in Figure 6, where the vertical and horizontal sides

are divided equally to form a network. The parameters of

the network can be automatically adjusted according to the

requirements of arbitrary segmentation surface models.

With the aid of a projection of the point cloud onto the

network surface, the sampling points are achieved by

means of searching for the closest point to each of net point.

The data are rotated so that the tunnel axis is parallel to the

Y-axis to achieve an efficient projection of the point cloud.

Considering the high efficiency and robustness require-

ments of large-area structural geometry modeling, the free-

form surface modeling of a 10 m long tunnel structure is

shown in Figure 7, where the blue surface is the rank-based

B-spline surface and the red point is the point cloud data. In

Figure 7, the red points are denser in the middle of the top

side of the tunnel, because this area is the standpoint of the

TLS scanner, and more point cloud data are gathered. The

black curve is the approximated curve of the two directions

of B-spline surface, which is curved due to the nature of the

points sampled.

In order to investigate the accuracy of surface modeling

of tunnel structures, the residuals are studied and described

in Figure 8, which corresponds to the residuals of the

X-direction.

The blue lines in Figure 8 depict the residuals of the

approximated surface in an X-axis direction, which is the

length direction of the tunnel, and the point index denotes

the numbering of the B-spline surface points, which tra-

verses each tunnel profile successively. According to Fig-

ure 8, it can be observed that the residuals achieve the

minimum value around the middle of the point index,

which is probably due to the varying data qualities along

the tunnel axis. Higher intensity will reduce the residuals

because the intensity of the point cloud decreases when the

scanning distance increases. Therefore, it is hinted that

Table 2. Comparison of tunnel profiles data.

Method RMSE (mm) Time (s)

Profile 1 2008 points RBM 7.22 3.09
HUB 4.96 4.61
LS 26.31 2.40

Profile 2 2657 points RBM 12.13 3.31
HUB 6.23 6.85
LS 32.22 2.56

Profile 3 3299 points RBM 33.30 6.28
HUB 24.22 8.66
LS 58.49 5.32

RBM: rank-based method; LS: least squares; HUB: Huber’s M-estimator;
RMSE: root-mean-square error.

Figure 6. Comparison of RBM and LS methods. RBM: rank-based
method; LS: least squares.
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intelligent robotic systems can effectively improve the sur-

face modeling accuracy and time consumption.

According to the comparison of tunnel profile data, the

B-spline surface modeling based on the RBM is more suit-

able than the HUB method for high-efficiency and robust

surface modeling of large-area structures. Since the effi-

ciency of B-spline surface modeling based on the LS

method is the highest, it is also recommended that the B-

spline surface modeling with the LS method is adopted

when the model accuracy requirements are not critical.

The comparison of the RBM and LS method for B-

spline surface modeling is shown in Figure 9, where the

blue and yellow surfaces are the RBM and LS-based B-

spline surfaces, respectively, and the red point denotes the

data point. It can be observed that the B-spline surface

model of the tunnel exhibits regional symmetry according

to Figure 9. It may be found that some disturbing objects

are covering the tunnel structures. Considering the specific

distribution of the point cloud, there could be cable chan-

nels in the corresponding regions of the tunnel. It is hinted

that B-spline surface modeling with various robustness

methods can achieve the intelligent clustering of 3D point

cloud data through combining deep learning theory.

Conclusions

The structural health monitoring of large-scale construction

structures is becoming more intelligent and convenient,

incorporating the fast development of robotic systems and

AI technology. This article proposed an RBM B-spline

surface modeling method which could reconstruct an auto-

matic and robust surface model based on the laser scanning

point cloud data to improve the quality of 3D parametric as-

built modeling and the efficiency of detecting the struc-

tures’ deformation. The contributions and conclusions are

summarized as follows:

(i) A novel method is proposed to search the sample

points taking advantage of the point cloud projec-

tion and network to reconstruct a flexible tunnel

surface model. Adjustment of the network para-

meters is possible to reach the requirement of

modeling arbitrary segmentation of the tunnel

structure.

(ii) An integrated B-spline surface modeling method

is proposed by means of nonparametric rank the-

ories to achieve a robust surface model. The Wil-

coxon score is employed to model the residuals

and reweighted LS is used to solve the unknown

parameters of the B-spline.

(iii) The RMSE and time-cost are adopted to survey

the performances of various methods for tunnel

profile modeling. It is proved that the B-spline

surface modeling based on the RBM is more suit-

able than the HUB method for high-efficiency and

Figure 7. B-spline modeling of tunnel structures with RBM. RBM:
rank-based method.

Figure 8. Residual of surface modeling of tunnel structure.

Figure 9. Model comparison of RBM and LS methods. RBM: rank-
based method; LS: least squares.

Xu and Yang 7



robust surface modeling of the long-distance

tunnel.

(iv) The RBM is adopted in the tunnel data where both

the curve and the surface model are constructed

and the RMSE and time consumption of the RBM

and HUB method are compared with various

profiles.

In summary, we propose the rank-based B-spline

method, which has a comparative potentiality in the mod-

eling of large structures, especially for the high require-

ments of efficiency and robustness of modeling.
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