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Abstract

Frieze patterns, as introduced by Coxeter in the 1970s, are closely related to cluster algebras without
coefficients. A suitable generalization of frieze patterns, linked to cluster algebras with coefficients,
has only briefly appeared in an unpublished manuscript by Propp. In this paper, we study these
frieze patterns with coefficients systematically and prove various fundamental results, generalizing
classic results for frieze patterns. As a consequence, we see how frieze patterns with coefficients can
be obtained from classic frieze patterns by cutting out subpolygons from the triangulated polygons
associated with classic Conway–Coxeter frieze patterns. We address the question of which frieze
patterns with coefficients can be obtained in this way and solve this problem completely for triangles.
Finally, we prove a finiteness result for frieze patterns with coefficients by showing that for a given
boundary sequence there are only finitely many (nonzero) frieze patterns with coefficients with
entries in a subset of the complex numbers without an accumulation point.

2010 Mathematics Subject Classification: 13F60 (primary); 05E15, 05E99, 51M20 (secondary)

1. Introduction

Frieze patterns were introduced by Coxeter [4], and a beautiful theory for frieze
patterns over positive integers was developed subsequently by Conway and
Coxeter [3]. Only some three decades later, the importance of frieze patterns
for other areas of mathematics became clearer when Fomin and Zelevinsky
invented cluster algebras [8]. Namely, the exchange condition in cluster algebras
mimics the local condition defining frieze patterns. In this way, starting with a
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set of indeterminates, the entries in a frieze pattern (over the field of rational
functions) are precisely the cluster variables of the corresponding cluster algebra
of Dynkin type A with trivial coefficients. Via cluster algebras, frieze patterns are
now connected to many areas of mathematics and therefore, frieze patterns are
currently a very active area of research; see the survey by Morier-Genoud [11] for
more details.

Classically, a frieze pattern is an infinite array of the form

. . .
. . .

0 1 ci−1,i+1 ci−1,i+2 · · · · · · ci−1,n+i 1 0
0 1 ci,i+2 ci,i+3 · · · · · · ci,n+i+1 1 0

0 1 ci+1,i+3 ci+1,i+4 · · · · · · ci+1,n+i+2 1 0
. . .

. . .

such that all neighbouring 2× 2-matrices have determinant 1.
From the cluster algebra viewpoint, the two bounding diagonals of 1’s mean

to set all the coefficients (or frozen variables) in the cluster algebra equal to 1.
Basically, the entire extensive recent literature on frieze patterns deals with such
classic frieze patterns.

In the theory of cluster algebras the coefficients are very important, so it would
be natural to consider more general frieze patterns where the bounding diagonals
can have arbitrary entries. Such frieze patterns have appeared briefly already in an
unpublished manuscript by Propp [13]. In particular, one finds the modified local
condition on 2× 2-determinants, now involving the boundary entries. This is set
up in such a way that, again, the entries in a certain frieze pattern (over the field of
rational functions) are precisely the cluster variables of the corresponding cluster
algebra with coefficients.

Since cluster algebras (with coefficients) are linked to numerous areas in
mathematics, the corresponding more general frieze patterns including the
coefficients have implicitly appeared in the literature, for example in the context
of T -systems, the octahedron recurrence [15] or as Plücker friezes [1], but so
far they have not been systematically studied. One aim of the present paper is
to develop the general theory of these more general frieze patterns, which we
call frieze patterns with coefficients; see Definition 2.1 for a precise definition.
As in the classic case, a satisfactory theory can only be expected for tame frieze
patterns with coefficients, which imposes that all adjacent 3 × 3-determinants
are 0. (There are far too many wild frieze patterns: see [5].)

In Sections 2 and 3, we develop a theory for tame frieze patterns with
coefficients, generalizing several of the well-known results for classic frieze
patterns.
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Frieze patterns with coefficients 3

We introduce certain 2 × 2-matrices, called µ-matrices, which govern the
propagation along the rows and the columns of a frieze pattern with coefficients,
that is, multiplication with such matrices transforms two consecutive entries in
a row or a column to the next two consecutive entries. See Definition 2.8 and
Proposition 2.10. Moreover, we present in Corollary 2.11 formulae for how every
entry in the frieze pattern appears in a certain product of µ-matrices.

As another application of the propagation formulae, we prove that every tame
frieze pattern with coefficients satisfies a glide reflection; see Theorem 2.12. A
fundamental domain for the entries of the tame frieze pattern with coefficients
under the glide reflection can be indexed in such a way that it corresponds
bijectively to the edges and diagonals of a regular (n + 3)-gon (where n is the
height of the frieze pattern).

This is the starting point in Section 3. It allows a useful alternative viewpoint for
tame frieze patterns with coefficients: the entries in such a frieze pattern become
the labels for the edges and diagonals of a polygon (where the boundary entries
become the labels for the edges). We show in Theorem 3.3 that these labels have
to satisfy many more than the defining local conditions, namely the so-called
Ptolemy relations.

For distinguishing the two viewpoints, we speak of a tame frieze with
coefficients if we consider a map from the edges and diagonals of a polygon
satisfying all Ptolemy relations.

In Section 4, we present a construction for obtaining friezes with coefficients
from classic friezes: given a classic frieze, one can cut out any subpolygon and
get a frieze with coefficients. If this frieze with coefficients is a classic frieze, then
it is a summand in the sense of [6] or [10].

This naturally leads to the question which friezes with coefficients can be
obtained from classic friezes by cutting out subpolygons. Small examples already
show that not every frieze with coefficients can be obtained from classic friezes
in this way.

The rest of Section 4 and also Section 5 deal with this fundamental question for
friezes with coefficients over positive integers. Our results not only give insight
into friezes with coefficients but also shed new light on the classic Conway–
Coxeter friezes, that is, friezes over positive integers with all boundary entries
equal to 1.

In Lemma 4.3, we show that any triangle cut out of a classic Conway–Coxeter
frieze has the property that the greatest common divisor of any two of the labels
on the triangle divides the third label. Conversely, we show in Lemma 4.5 that
given two coprime natural numbers a, b, there exists a classic Conway–Coxeter
frieze containing a triangle with labels 1, a, b. The proof of this result exhibits
a close connection between friezes and the Euclidean algorithm, which we think
might be of interest in its own right.
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Note that the results just mentioned do not completely settle the question which
labelled triangles can actually appear as subpolygons of classic Conway–Coxeter
friezes. It turns out that this problem is rather subtle, and we address it in Section 5.
As a main result we give a complete classification of the problem, that is, we
describe the triples (a, b, c) ∈ N3 such that there exists a triangle in some classic
Conway–Coxeter frieze with labels a, b, c.

THEOREM 1.1 (Theorem 5.12). Let a, b, c ∈ N. Then the triple (a, b, c) appears
as labels of a triangle in a classic Conway–Coxeter frieze if and only if
gcd(a, b) = gcd(b, c) = gcd(a, c) and

ν2(a) = ν2(b) = ν2(c) = 0 or |{ν2(a), ν2(b), ν2(c)}| > 1,

where ν2(n) is the 2-valuation of n.

In Section 6, we go back to frieze patterns with coefficients having entries in
any subset R ⊆ C (not necessarily integers as in the previous section). We address
another fundamental question: For a given boundary sequence, how many frieze
patterns with coefficients exist over R? Our main interest is whether there are
finitely or infinitely many such frieze patterns. Easy examples show that allowing
entries to be 0 rather quickly leads to infinitely many frieze patterns. So we restrict
to frieze patterns with nonzero entries.

In Lemma 6.1, we prove a rather general finiteness result, which for a given
boundary sequence yields an upper bound for the values in the quiddity cycle
of the corresponding frieze pattern. This generalizes a similar result for classic
frieze patterns from [7, Theorem 3.6]. As a consequence, we can conclude that for
every subset R of the complex numbers without an accumulation point and every
boundary sequence, there exist only finitely many frieze patterns over R\{0}with
the given boundary sequence; see Proposition 6.3.

2. Definition and fundamental properties

In this section, we introduce frieze patterns with coefficients. This concept goes
back to an unpublished manuscript by Propp [13]. A large amount of research has
been carried out on classic frieze patterns, where all coefficients have been set to 1.
A systematic treatment of the far more general frieze patterns with coefficients
does not seem to be present in the literature so far. Therefore, we give a detailed
account here, in particular, proving several fundamental properties of such frieze
patterns with coefficients, generalizing well-known properties of the classic frieze
patterns.
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Frieze patterns with coefficients 5

DEFINITION 2.1. Let R ⊆ C be a subset of complex numbers. Let n ∈ Z>0.
A frieze pattern with coefficients of height n over R is an infinite array of the

form

. . .
. . .

0 ci−1,i ci−1,i+1 ci−1,i+2 · · · · · · ci−1,n+i ci−1,n+i+1 0
0 ci,i+1 ci,i+2 ci,i+3 · · · · · · ci,n+i+1 ci,n+i+2 0

0 ci+1,i+2 ci+1,i+3 ci+1,i+4 · · · · · · ci+1,n+i+2 ci+1,n+i+3 0,
. . .

. . .

where we also set ci,i = 0 = ci,n+i+3 for all i ∈ Z, such that the following holds:

(i) ci, j ∈ R for all i ∈ Z and i < j < n + i + 3.

(ii) ci,i+1 6= 0 for all i ∈ Z.

(iii) For every (complete) adjacent 2× 2-submatrix
( ci, j ci, j+1

ci+1, j ci+1, j+1

)
, we have

ci, j ci+1, j+1 − ci, j+1ci+1, j = ci+1,n+i+3c j, j+1. (Ei, j )

REMARK 2.2.

(1) The diagonals with entries ci,i+1 and ci,n+i+2 are called the boundary of
the frieze pattern with coefficients. Part (iii) of the definition says that the
determinant of every (complete) adjacent 2 × 2-submatrix is given by the
product of two specific entries on the boundary of the frieze pattern, namely
the numbers in solid boxes in Figure 1.

(2) Note that for j = i + 1, Equation (Ei,i+1) imposes that

ci,i+1ci+1,i+2 = ci+1,n+i+3ci+1,i+2.

Since ci+1,i+2 6= 0 by part (ii) and R ⊆ C has no zero divisors, we conclude
that

ci,i+1 = ci+1,n+i+3 for all i ∈ Z. (1)

Similarly, from Equation (Ei+1,n+i+3) we get that

ci+1,n+i+3 = cn+i+3,n+i+4 for all i ∈ Z. (2)

This means that there is a glide symmetry on the boundary entries. In
particular, applying (1) and (2) we get ci,i+1 = cn+i+3,n+i+4 for all i ∈ Z.
That is, for a frieze pattern with coefficients of height n the boundary is
periodic of period n + 3. Hence, the entire boundary is determined by a
sequence of n + 3 consecutive boundary entries (ci,i+1, . . . , cn+i+2,n+i+3).
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Figure 1. The local condition in a frieze pattern with coefficients.

(3) From the glide symmetry in (1), it also follows that the local condition (Ei, j )
in Definition 2.1 could as well be stated in terms of two other boundary
entries, namely the numbers in dashed boxes instead of the numbers in solid
boxes in Figure 1.

REMARK 2.3. Frieze patterns with coefficients can be scaled, that is, if C = (ci, j)

is a frieze pattern with coefficients and z ∈ C \ {0}, then zC := (zci, j) is again
a frieze pattern with coefficients (possibly over some other subset R ⊆ C). This
follows immediately from Definition 2.1.

EXAMPLE 2.4.

(1) Classic frieze patterns, as introduced by Coxeter [4], are those frieze
patterns with coefficients where all boundary entries are equal to 1.

(2) All frieze patterns with coefficients of height 0 are of the form
. . .

0 a c 0
0 b a 0

0 c b 0
0 a c 0

0 b a 0
0 c b 0

. . .

with arbitrary nonzero numbers a, b, c.
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Frieze patterns with coefficients 7

(3) We describe all frieze patterns with coefficients of height 1 over the positive
integers. Take any four numbers a, b, c, d ∈ Z>0 and consider the infinite
array of the form (repeated periodically)

. . .

0 a x d 0
0 b y a 0

0 c z b 0
0 d w c 0

. . .

It is easy to check from the local conditions that x = z and y = w. Then
this is a frieze pattern with coefficients if and only if xy = ac+bd . In other
words, given a, b, c, d ∈ Z>0 we obtain for each divisor of ac + bd such a
frieze pattern with coefficients.
As an explicit example, we have the following frieze pattern with
coefficients over Z>0:

. . .

0 3 4 3 0
0 7 9 3 0

0 5 4 7 0
0 3 9 5 0

. . .

For general subsets R ⊆ C, there are many frieze patterns with coefficients
having entries in R, and many of them do not exhibit nice symmetry properties.
This is already the case for classic frieze patterns; see [5]. As in the classic case,
a satisfactory theory can only be expected for tame frieze patterns.

DEFINITION 2.5. Let C be a frieze pattern with coefficients as in Definition 2.1.
Then C is called tame if every complete adjacent 3 × 3-submatrix of C has
determinant 0.

The class of tame frieze patterns with coefficients is quite large; for example,
it contains all frieze patterns with coefficients without zero entries. For the sake
of completeness, we include a proof of this fact here, which is well known in the
classic case.

PROPOSITION 2.6. Let C be a frieze pattern with coefficients as in Definition 2.1.
If ci, j 6= 0 for all i ∈ Z and i + 1 6 j 6 n + i + 2, then C is tame.
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M. Cuntz, T. Holm and P. Jørgensen 8

Proof. We consider an arbitrary complete adjacent 3× 3-submatrix of C, say

Ci, j :=

ci−1, j−1 ci−1, j ci−1, j+1

ci, j−1 ci, j ci, j+1

ci+1, j−1 ci+1, j ci+1, j+1

 ,
where i ∈ Z and i + 2 6 j 6 n + i + 1. Note that by assumption, the central
element ci, j is nonzero. By the Sylvester identity [16], we get

det Ci, j =
1

ci, j
· det

(
ci−1, j−1ci, j − ci−1, j ci, j−1 ci−1, j ci, j+1 − ci−1, j+1ci, j

ci, j−1ci+1, j − ci, j ci+1, j−1 ci, j ci+1, j+1 − ci, j+1ci+1, j

)
.

Using Equations (Ei−1, j−1), (Ei−1, j ), (Ei, j−1) and (Ei, j ) we deduce

det Ci, j =
1

ci, j
· det

(
ci,n+i+2c j−1, j ci,n+i+2c j, j+1

ci+1,n+i+3c j−1, j ci+1,n+i+3c j, j+1

)
= 0,

proving the claim.

We aim at showing that every tame frieze pattern with coefficients satisfies a
glide symmetry. We have already seen in Remark 2.2 that the boundary entries
have a glide symmetry, namely we have ci,i+1 = ci+1,n+i+3 for all i ∈ Z.

For extending this to all entries of the frieze patterns with coefficients, we need
formulae describing how entries are ‘propagated’ along rows and columns, that is,
how to obtain two consecutive entries in a row or column from the previous two
entries. To this end, it is useful to slightly extend the definition of a frieze pattern
with coefficients by introducing two extra diagonals.

REMARK 2.7. Let C be a frieze pattern with coefficients over R ⊆ C as in
Definition 2.1. The corresponding extended frieze pattern with coefficients Ĉ is
the infinite array of the form

. . .
. . .

−ci−2,i−1 0 ci−1,i ci−1,i+1 · · · · · · ci−1,n+i ci−1,n+i+1 0 −ci−1,i

−ci−1,i 0 ci,i+1 ci,i+2 · · · · · · ci,n+i+1 ci,n+i+2 0 −ci,i+1

−ci,i+1 0 ci+1,i+2 ci+1,i+3 · · · · · · ci+1,n+i+2 ci+1,n+i+3 0 −ci+1,i+2

. . .
. . .

That is, in addition to Definition 2.1 we set

ci,i−1 := −ci−1,i and ci,n+i+4 := −ci,i+1 for all i ∈ Z.

We mention some fundamental properties of these extended frieze patterns with
coefficients.
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Frieze patterns with coefficients 9

(1) All local conditions (Ei, j ) also hold in Ĉ. In fact, the only new equations to
check are (Ei,i ) and (Ei,n+i+3) for i ∈ Z. The former one reads as

ci,i ci+1,i+1 − ci,i+1ci+1,i = ci+1,n+i+3ci,i+1,

which is true since ci,i = 0 by Definition 2.1, ci+1,i = −ci,i+1 by the above
definition and ci+1,n+i+3 = ci,i+1 by (1). Similarly, one checks that (Ei,n+i+3)
holds.

(2) C is tame if and only if Ĉ is tame (see Definition 2.5). In fact, the new
complete adjacent 3× 3-submatrices in Ĉ are of the form ci−1,i ci−1,i+1 ci−1,i+2

0 ci,i+1 ci,i+2

−ci,i+1 0 ci+1,i+2

 and

ci−1,n+i+1 0 −ci−1,i

ci,n+i+1 ci,n+i+2 0
ci+1,n+i+1 ci+1,n+i+2 ci+1,n+i+3


for i ∈ Z. The matrix on the left can be shown to have determinant 0 by
expanding along the first column, using equation (Ei−1,i+1) and the glide
symmetry formula (1). Similarly, the matrix on the right has determinant 0.

Instead of only adding two further diagonals to a frieze pattern with coefficients
C, one could extend C to an entire SL2-tiling of the plane, still satisfying all local
conditions and tameness. This is well known for classic frieze patterns and can
easily be transferred to frieze patterns with coefficients. We do not introduce this
viewpoint here since it is not used in the present paper.

We can now start to develop the propagation formulae. It will turn out that the
following matrices are crucial for this.

DEFINITION 2.8 (µ-matrices and η-matrices). For c, d ∈ C and e ∈ C \ {0}, let

µ(c, d, e) :=

0 −
d
e

1
c
e

 , (3)

η(c, d, e) :=

c
e
−

d
e

1 0

 . (4)

REMARK 2.9. For classic frieze patterns (that is, all coefficients are 1), the
matrices η(c, 1, 1) are used throughout the literature. For our purposes, the
matrices µ(c, d, e) are more convenient. They are closely linked, namely

µ(c, d, e) = τη(c, d, e)T τ,
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M. Cuntz, T. Holm and P. Jørgensen 10

if τ :=
(

0 1
1 0

)
. Moreover, if d 6= 0, then

η(c, d, e)−1
= τη(c, e, d)τ.

The following result provides the propagation formulae. Note that we write the
entries as they appear in the frieze pattern with coefficients in Definition 2.1, that
is, as row vectors for the propagation along rows and as column vectors for the
propagation along columns.

PROPOSITION 2.10. Let R ⊆ C be a subset. Let C = (ci, j) be a tame frieze
pattern with coefficients over R of height n, and Ĉ the corresponding extended
frieze pattern (see Remark 2.7). We write di := ci,i+1, ci := ci,i+2 for i ∈ Z and
hence ci,i−1 = −ci−1,i = −di−1. Then

(1) (ci, j−1, ci, j)µ(c j−1, d j , d j−1) = (ci, j , ci, j+1) for all i ∈ Z and i 6 j 6
n + i + 3,

(2) µ(ci−1, di , di−1)
T
(ci−1,k

ci,k

)
=
( ci,k

ci+1,k

)
for all k ∈ Z and k − n − 3 6 i 6 k.

Proof. We prove the first part; the proof of the second part is similar.
We first consider the cases j = i and j = i + 1 separately. For j = i , we have

(ci,i−1, ci,i)µ(ci−1, di , di−1) = (−di−1, 0)

0 −
di

di−1

1
ci−1

di−1

 = (0, di) = (ci,i , ci,i+1)

as claimed. For j = i + 1, we similarly get

(ci,i , ci,i+1)µ(ci , di+1, di) = (0, di)

0 −
di+1

di

1
ci

di

 = (di , ci) = (ci,i+1, ci,i+2).

Now suppose i + 2 6 j 6 n + i + 3. Then we consider the following complete
adjacent 3× 3-submatrix of the extended frieze pattern

M =

 ci, j−1 ci, j ci, j+1

ci+1, j−1 ci+1, j ci+1, j+1

ci+2, j−1 ci+2, j ci+2, j+1

 .
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Frieze patterns with coefficients 11

The first two columns of M cannot be linearly dependent because the upper left
2× 2-submatrix has determinant di d j−1 6= 0 by Definition 2.1 and Remark 2.2.

But C is tame by assumption. Hence the determinant of M is zero; so there are
suitable numbers s, t such that

M =

 ci, j−1 ci, j sci, j−1 + tci, j

ci+1, j−1 ci+1, j sci+1, j−1 + tci+1, j

ci+2, j−1 ci+2, j sci+2, j−1 + tci+2, j

 .
Now Equations (Ei, j ) and (Ei, j−1) imply

di d j = ci,i+1c j, j+1 = ci+1,n+i+3c j, j+1

= ci, j ci+1, j+1 − ci, j+1ci+1, j

= ci, j(sci+1, j−1 + tci+1, j)− ci+1, j(sci, j−1 + tci, j)

= s(ci, j ci+1, j−1 − ci+1, j ci, j−1)

= −sci+1,n+i+3c j−1, j = −sdi d j−1,

and we conclude that s = −d j/d j−1. Thus we see from the shape of the matrix M
that for fixed j − 1, there is a t j−1 = t such that for all i we have

(ci, j−1, ci, j)

0 −
d j

d j−1

1 t j−1

 = (ci, j , ci, j+1).

In particular, this equation holds for i = j − 1 and we get

c j−1 = c j−1, j+1 = − c j−1, j−1︸ ︷︷ ︸
=0

d j

d j−1
+ c j−1, j t j−1 = c j−1, j t j−1 = d j−1t j−1,

hence t j−1 = c j−1/d j−1. Altogether we obtain

(ci, j−1, ci, j)µ(c j−1, d j , d j−1) = (ci, j−1, ci, j)

0 −
d j

d j−1

1
c j−1

d j−1

 = (ci, j , ci, j+1),

as claimed.

As a consequence, we can give a useful formula for determining the entries of
the frieze pattern with coefficients from the corresponding µ-matrices.
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COROLLARY 2.11. Let R ⊆ C be a subset. Let C = (ci, j) be a tame frieze pattern
with coefficients over R of height n, and as before set di = ci,i+1, ci = ci,i+2 for
i ∈ Z. Then we have:

(1)
∏ j

k=i µ(ck−1, dk, dk−1) = (1/di−1)
(
−ci, j −ci, j+1

ci−1, j ci−1, j+1

)
for all i ∈ Z and

i − 1 6 j 6 n + i + 2;

(2)
∏n+3

k=1 µ(ck−1, dk, dk−1) = −id.

Proof. We consider the extended frieze pattern with coefficients as in Remark 2.7;
in particular, we set ci,i−1 = −di−1 for all i ∈ Z.

(1) From the first part of Proposition 2.10, we know that(
−di−1 0

0 di−1

)
·

(
j∏

k=i

µ(ck−1, dk, dk−1)

)

=

(
ci,i−1 ci,i

ci−1,i−1 ci−1,i

)
·

(
j∏

k=i

µ(ck−1, dk, dk−1)

)

=

(
ci, j ci, j+1

ci−1, j ci−1, j+1

)
and the claim follows.

(2) By the first part for i = 1 and j = n + 3, we have

n+3∏
k=1

µ(ck−1, dk, dk−1) =
1
d0

(
−c1,n+3 −c1,n+4

c0,n+3 c0,n+4

)
.

Now the claim follows since c0,n+3 = 0 = c1,n+4 by Definition 2.1, c0,n+4 =

−c0,1 = −d0 by Remark 2.7 and c1,n+3 = c0,1 = d0 by Equation (1).

As another main result of this section, we can now prove that the entries of a
tame frieze pattern with coefficients are invariant under a glide reflection. This
will become crucial in the following sections.

THEOREM 2.12. Let R ⊆ C be a subset. Let C = (ci, j) be a tame frieze pattern
with coefficients over R of height n. Then for all entries of C, we have

ci, j = c j,n+i+3.

Proof. We consider the i th row and the (n+i+3)th column in the extended frieze
pattern corresponding to C; see Figure 2. We propagate along the (n + i + 3)th
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Frieze patterns with coefficients 13

Figure 2. The i th row and the (n+ i+3)th column in the extended frieze pattern.

column using Proposition 2.10(2) and get

(
c j,n+i+3

c j+1,n+i+3

)
= µ(c j−1, d j , d j−1)

T . . . µ(ci , di+1, di)
Tµ(ci−1, di , di−1)

T

(
−di−1

0

)

=

(
j∏

k=i

µ(ck−1, dk, dk−1)

)T (
−di−1

0

)
.

This implies that

c j,n+i+3 = −di−1

( j∏
k=i

µ(ck−1, dk, dk−1)

)T


1,1

= −di−1

(
j∏

k=i

µ(ck−1, dk, dk−1)

)
1,1

= ci, j ,

where the last equality holds by Corollary 2.11.

REMARK 2.13. It follows from Theorem 2.12 that ci, j = cn+i+3,n+ j+3 for all
entries of C, that is, the diagonals of C are periodic of period n + 3. Note that
this is exactly what is known as Zamolodchikov periodicity in type A; see [9].
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Figure 3. Fundamental domain for the glide symmetry of a frieze pattern with
coefficients.

3. Ptolemy relations

In the previous section, we have seen that every tame frieze pattern with
coefficients over some subset R ⊆ C satisfies a glide symmetry; see Theorem 2.12.
More precisely, Theorem 2.12 states that the triangular part of the frieze pattern
with coefficients given in Figure 3 forms a fundamental domain for the action
of the glide symmetry. Note that the indices of the entries in this fundamental
domain are in bijection with the edges and diagonals of a regular (n + 3)-gon
(viewed as pairs of vertices), with vertices labelled 1, 2, . . . , n + 3. This means
that we can view every tame frieze pattern with coefficients of height n over R as
a map on the edges and diagonals of a regular (n + 3)-gon with values in R.

CONVENTION. We use the notion (tame) frieze pattern with coefficients for an
infinite array as in Definition 2.1 and the notion (tame) frieze with coefficients for
a corresponding map from edges and diagonals of a regular polygon.

The entries in a frieze (pattern) with coefficients are tightly connected by many
remarkable equations, in addition to the local conditions given in Equations (Ei, j )
in Definition 2.1.

DEFINITION 3.1. Let C = (ci, j) be a tame frieze with coefficients over R ⊆ C
on a regular m-gon. We say that C satisfies the Ptolemy relation for the indices
1 6 i 6 j 6 k 6 ` 6 m if the following equation holds:

ci,kc j,` = ci,`c j,k + ci, j ck,`. (Ei, j,k,`)
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Figure 4. The Ptolemy relation (Ei, j,k,`).

REMARK 3.2.

(1) By Definition 2.1, the entries ci,i are zero for all i ∈ Z. This implies that the
Equations (Ei, j,k,`) always hold if there are equalities among the numbers
i, j, k, `.

(2) If i < j < k < `, then the Ptolemy relation (Ei, j,k,`) can be visualized
as in Figure 4. The Ptolemy relation asks that in the quadrilateral, the
product of the labels on the diagonals equals the sum of the products of
labels of opposite sides; see Ptolemy’s theorem from elementary Euclidean
geometry.

(3) The local conditions for a frieze pattern from Definition 2.1 are a special
case of Ptolemy relations. Namely, the local condition (Ei, j ) is equal to the
Ptolemy relation (Ei,i+1, j, j+1) (using ci,i+1 = ci+1,n+i+3 by Remark 2.2).

The next result now extends a fundamental property for classic friezes (see [4,
Equation (5.7)]) to friezes with coefficients.

THEOREM 3.3. Every tame frieze with coefficients over some subset R ⊆ C
satisfies all Ptolemy relations.

Proof. Let C be a tame frieze on a regular m-gon, where m > 3. Take any four
vertices 1 6 i 6 j 6 k 6 ` 6 m of the regular m-gon. By Corollary 2.11, we
have that

Mi+1, j :=

j∏
k=i+1

µ(ck−1, dk, dk−1) =
1
di

(
−ci+1, j −ci+1, j+1

ci, j ci, j+1

)
.
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Using Mi+1,k = Mi+1, j M j+1,k , M j+1,` = M j+1,k Mk+1,` and Mi+1,` =

Mi+1, j M j+1,k Mk+1,`, we get from the (2, 1)-entries of the matrices that

1
di

ci,k =
1

di d j
(ci, j+1c j,k − c j+1,kci, j), (5)

1
d j

c j,` =
1

d j dk
(c j,k+1ck,l − ck+1,`c j,k), (6)

1
di

ci,` =
1

di d j dk
(ci, j+1c j,k+1ck,` − ci, j+1ck+1,`c j,k

+ c j+1,kck+1,`ci, j − c j+1,k+1ci, j ck,`). (7)

With these three equations and (E j,k), we conclude:

1
di d j

(ci, j ck,` + c j,kci,` − ci,kc j,`)

(5),(6)
=

1
di d j

(ci, j ck,` + c j,kci,`)

−
1

di d2
j dk
(ci, j+1c j,k − c j+1,kci, j)(c j,k+1ck,l − ck+1,`c j,k)

(7)
=

1
di d j

(ci, j ck,` + c j,kci,`)

−
1

di d2
j dk
(ci, j+1c j,k − c j+1,kci, j)(c j,k+1ck,l − ck+1,`c j,k)

+
1
d j

c j,k

(
1

di d j dk
(ci, j+1c j,k+1ck,` − ci, j+1ck+1,`c j,k

+ c j+1,kck+1,`ci, j − c j+1,k+1ci, j ck,`)−
1
di

ci,`

)
=

1
di d j

ci, j ck,`

(
1−

1
d j dk

(c j,kc j+1,k+1 − c j,k+1c j+1,k)

)
(E j,k )
= 0.

Hence we obtain ci, j ck,` + c j,kci,` = ci,kc j,`, that is, the Ptolemy relation (Ei, j,k,`)

holds.

REMARK 3.4. We have now seen that a tame frieze pattern with coefficients as in
Definition 2.1 is basically the same as a map on edges and diagonals of a polygon
satisfying all Ptolemy relations. This means that indeed the local condition of a
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Frieze patterns with coefficients 17

frieze pattern with coefficients produces the cluster variables of a Ptolemy cluster
algebra with coefficients; see for instance [14, Section 1] for a description of the
Ptolemy cluster algebra (also known as cluster algebra of Dynkin type A with
nontrivial coefficients).

4. Frieze patterns from subpolygons

From now on, we consider frieze patterns with coefficients over positive
integers.

Using the cluster algebra viewpoint as in Remark 3.4, one can see that for
every boundary sequence of positive integers (of length n + 3) there exists a
frieze pattern with coefficients over the positive integers. Indeed, a theorem on
cluster algebras, the Laurent phenomenon, implies that every cluster variable can
be expressed as a rational function whose denominator is a monomial in the
initial nonfrozen cluster variables (that is, the coefficients do not appear in the
denominator) and whose numerator is a positive sum (no minus signs appear) of
products of frozen and nonfrozen initial cluster variables. Hence, specializing the
initial cluster variables to 1 gives a frieze pattern of positive integers with the
given boundary sequence.

EXAMPLE 4.1. Consider a boundary sequence (a, b, c, d, e), that is, a sequence
of frozen variables. The corresponding frieze pattern of height 2 has the form

. . .

0 a x y e 0

0 b
ac + yb

x
∗ a 0

0 c
ce + xd

y
x b 0

0 d y
ac + yb

x
c 0

0 e ∗
ce + xd

y
d 0,

. . .

where x, y denote the cluster variables in the chosen initial cluster and
∗ = (bey + ace + axd)/xy. Specializing the initial frozen cluster variables to
any positive integers and the nonfrozen cluster variables x, y to 1 yields a frieze
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pattern of positive integers. As an explicit example, we have a frieze pattern
. . .

0 3 1 1 7 0
0 2 302 2126 3 0

0 100 704 1 2 0
0 4 1 302 100 0

0 7 2126 704 4 0
. . .

In the previous section, we have seen that a tame frieze pattern with coefficients
of height n can be seen as a map from edges and diagonals of an (n+3)-gon such
that all Ptolemy relations are satisfied.

For classic friezes over N, there is a beautiful combinatorial description via
triangulations of polygons [3].

CONVENTION. From now on, we use the notion classic Conway–Coxeter frieze
(pattern) for a classic frieze (pattern) over the positive integers N.

Our aim is to connect the more general theory of friezes with coefficients over
N with the theory of classic Conway–Coxeter friezes.

From the viewpoint of polygons, there is an obvious way to obtain friezes
with coefficients from classic Conway–Coxeter friezes. Namely, take any classic
Conway–Coxeter frieze C. This corresponds to a triangulation of a regular
polygon [3], that is, it is given as a map fC from edges and diagonals of the
polygon to N, where fC takes value 1 on the edges and the diagonals forming the
triangulation.

Now cut out any subpolygon and restrict the map fC to this subpolygon. Clearly,
the restricted map still satisfies all Ptolemy relations of the subpolygon, that is, the
restriction yields a frieze with coefficients.

EXAMPLE 4.2. We consider the triangulation of a hexagon on the left in Figure 5
and the corresponding Conway–Coxeter frieze. For instance, we can cut out the
subpolygon highlighted by thick lines on the right in Figure 5. This yields a frieze
with coefficients with boundary sequence (1, 1, 2, 2), and diagonal values 1, 4 as
indicated in the figure.

The fundamental question then is as follows: Which friezes with coefficients
over N can be obtained from classic Conway–Coxeter friezes by cutting out
subpolygons?
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Frieze patterns with coefficients 19

Figure 5. A frieze with coefficients cut out of a Conway–Coxeter frieze.

The following result gives some restrictions for the smallest case of triangles.

LEMMA 4.3. Let C = (ci, j) be a classic Conway–Coxeter frieze and i 6 j 6 k.
Then the greatest common divisor of any two of the numbers ci, j , c j,k, ci,k divides
the third number. In particular, gcd(ci, j , c j,k) = gcd(c j,k, ck,i) = gcd(ci, j , ck,i).

Proof. By symmetry and relabelling, it suffices to show that gcd(c j,k, ci,k)

divides ci, j .
If i = j , then the assertion holds since ci,i = 0. If j = k, then gcd(c j,k, ci,k) =

ci,k = ci, j and the claim follows. If j = k−1, then gcd(c j,k, ci,k)= gcd(1, ci,k)= 1,
which clearly divides ci, j .

So from now on, we can assume that i < j < k − 1. Then the Ptolemy relation
for the crossing diagonals (i, k − 1) and ( j, k) implies that

ci,k−1c j,k = c j,k−1ci,k + ci, j ck−1,k = c j,k−1ci,k + ci, j .

Therefore, any common divisor of c j,k and ci,k divides ci, j and the claim follows.

EXAMPLE 4.4.

(1) We have seen in Example 2.4 that any frieze with coefficients of height 0
over N is given by three numbers a, b, c; these are the values attached
to the edges of the corresponding triangle. Lemma 4.3 implies that such
a triangle can only be cut out of a classic Conway–Coxeter frieze if the
greatest common divisor of two of a, b, c divides the third. For instance,
a triangle with values 1, 2, 2 cannot come from a classic Conway–Coxeter
frieze.

In the next section, we will consider triangles in more detail and will obtain
a complete characterization for which triangles with triples a, b, c can be
cut out of a classic Conway–Coxeter frieze.
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(2) Consider the following frieze with coefficients on a square:

1

1

2

2

1

4

This square cannot be cut out of a classic Conway–Coxeter frieze because
it contains a triangle with values 1, 2, 2, which cannot come from a classic
Conway–Coxeter frieze by part (1).

We have seen in Examples 4.2 and 4.4 that whether a frieze with coefficients
can be cut out of a classic Conway–Coxeter frieze does not only depend on the
boundary sequence.

Building on the Euclidean algorithm, the next result shows that triangles can
be cut out of a classic Conway–Coxeter frieze if one of the values on the edges
is 1 and the other two values are coprime. Note that the coprimeness condition
has to be satisfied in this case by Lemma 4.3. This is a known property of classic
Conway–Coxeter friezes (see [12, Section 2.5, Fact 3(iii)]); for the convenience
of the reader, we include a proof here.

LEMMA 4.5. Let a, b ∈ Z>0 with gcd(a, b) = 1. Then there exists a classic
Conway–Coxeter frieze C = (ci, j) and a k > 1 such that c1,k = a, ck,k+1 = 1
and c1,k+1 = b.

Proof. Note that by assumption not both of a, b can be zero, since gcd(0, 0) = 0.
If one of them is zero, say a = 0, then b = gcd(0, b) = gcd(a, b) = 1 and the
assertion holds with k = 1; in fact, use the unique classic Conway–Coxeter frieze
on a triangle.

So from now on we can assume that a, b ∈ N. We show how the Euclidean
algorithm leads to a triangulation of a polygon, and hence to a classic Conway–
Coxeter frieze, with the required values.

First, we perform the Euclidean algorithm, where we can assume that a > b.
Set r0 = a and r1 = b; then

a = q1b + r2

b = q2r2 + r3

r2 = q3r3 + r4
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...

r`−2 = q`−1r`−1 + r`
r`−1 = q`r` + r`+1

r` = q`+1r`+1 + 0.

Note that by assumption, we have r`+1 = gcd(a, b) = 1 and q`+1 = r`.
We now describe how to obtain from this data a suitable triangulation of a

polygon.
Consider the usual number line, and the integral points as vertices. Start with

the edge connecting 1 and 2. Then draw q`+1 arcs from 2 to the left to the next
available vertices, that is, to the vertices 0,−1, . . . ,−q`+1 + 1. Then from vertex
−q`+1 + 1 draw q` arcs to the right to the next available vertices. Continue in this
alternating fashion by drawing q`−1, q`−2, . . . , q3, q2, q1 arcs to the left and right,
respectively.

This gives a triangulation of a polygon whose vertices are the integers that
are attached to one of the arcs described above. (The rest of the number line is
now disregarded.) Note that this polygon is an m := (2 +

∑`+1
j=1 q j)-gon. We

keep the label for vertex 1, but then number the vertices of this polygon as usual
consecutively by 1, 2, . . . ,m.

We claim that the classic Conway–Coxeter frieze to this triangulation of the
m-gon has the desired properties. For this, we use a well-known combinatorial
algorithm for computing arbitrary frieze entries from the triangulation (see [2])
starting from the vertex 1. The values attached to the vertices by this algorithm
are then the frieze entries c1, j .

The endpoint of the last of q`+1 arcs to the left gets the label q`+1 = r`. Then
the endpoints of the q` arcs to the right get the labels r` + 1, 2r` + 1, . . . , q`r` +
1 = r`−1. Then the last of the endpoints of the q`−1 arcs to the left gets the label
q`−1r`−1 + r` = r`−2. Eventually, we get two consecutive vertices k + 1 and k in
the polygon, which get assigned the values r1 = b and r0 = a.

This means that we have constructed a classic Conway–Coxeter frieze C =
(ci, j) with ck,k+1 = 1, c1,k = a and c1,k+1 = b.

5. Triangles in Conway–Coxeter friezes

We have seen in Section 4 that cutting out any subpolygon of a classic Conway–
Coxeter frieze yields a frieze with coefficients over N. In this section, we give
an explicit description of all possible values on the edges of triangles cut out
of classic Conway–Coxeter friezes. Recall that we have already obtained some
results on triples (a, b, c) appearing as labels of a triangle cut out of a classic
Conway–Coxeter frieze. Namely, the greatest common divisor of any two of the
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numbers divides the third (see Lemma 4.3), and for any pair a, b of coprime
natural numbers, the triple (a, 1, b) appears as a triangle in some classic Conway–
Coxeter frieze (see Lemma 4.5).

However, the complete classification of possible triples is rather subtle and will
be the main topic of this section; see Theorem 5.11 below for a precise statement
of our main result.

The following auxiliary result shows that given three vertices of an n-gon, any
triangulation of the n-gon contains a triangle, which separates the given points.

LEMMA 5.1. Let C = (ci, j) be a classic Conway–Coxeter frieze on an n-gon. If
1 6 i < j < k 6 n, then there exist i ′, j ′, k ′ with i 6 i ′ 6 j 6 j ′ 6 k 6 k ′ or
k ′ 6 i 6 i ′ 6 j 6 j ′ 6 k such that

ci ′, j ′ = c j ′,k′ = ck′,i ′ = 1.

Proof. Let T be the triangulation of an n-gon corresponding to the classic
Conway–Coxeter frieze C, that is, T is the set of edges and diagonals of the
n-gon mapped to 1 under the map fC mentioned in Section 4. Any diagonal of T
divides the n-gon into two subpolygons.

If each diagonal of T has the property that the three vertices i, j, k are
contained in one of the two subpolygons, then the triangle given by i, j, k is a
triangle of the triangulation T and we are done by choosing i = i ′, j = j ′ and
k = k ′.

So we can choose a diagonal (u, v) of T , which separates the three vertices. By
symmetry and possibly relabelling the vertices, we can assume that we have the
situation as given in Figure 6. Moreover, we choose the diagonal (u, v) ∈ T such
that |i − u| and |v − j | are minimal. That is, of all the diagonals of T separating
the three vertices in this way, we choose the one closest to the diagonal (i, j).
Note that the latter need not be in T , but the cases i = u and j = v are allowed.

If j 6= i + 1, then the diagonal (u, v) of T is part of a triangle in the left
subpolygon. By minimality of |i − u| and | j − v|, the third endpoint w of this
triangle must satisfy i + 1 6 w 6 j − 1. Now set i ′ = w, j ′ = v, k ′ = u, and we
are done.

This leaves us with the case that j = i + 1. But then the edge (i, i + 1) is part
of a triangle of T , and it is not hard to check that the assertion of the lemma holds
in this case.

We now come to a crucial reformulation of the problem of describing the
triangles, which appear as subpolygons in classic Conway–Coxeter friezes.
Namely, we are going to show that such triangles correspond (but not bijectively!)
to certain tuples of coprime pairs of numbers.
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Figure 6. A diagonal separating three vertices.

To understand the following explanations, Figure 7 might be helpful. In
particular, the Ptolemy relations required in the proof of Proposition 5.3 are easy
to read from the picture.

DEFINITION 5.2. Let

S := {(a1, a2, b1, b2, c1, c2) ∈ Z6
| gcd(a1, a2) = gcd(b1, b2) = gcd(c1, c2) = 1}

and S>0 := S ∩ Z6
>0. Moreover, let ∆ : S→ Z3 be the map

∆((a1, a2, b1, b2, c1, c2))

:= (b1c1 + b1c2 + b2c2, a1c1 + a2c1 + a2c2, a1b1 + a1b2 + a2b2).

The following result explains the relevance of the sets and maps in
Definition 5.2 for our purposes; namely, every triple of labels of a triangle
cut out of a classic Conway–Coxeter frieze is in the image of the map ∆.

PROPOSITION 5.3. Let C = (ci, j) be a classic Conway–Coxeter frieze. If
i < j < k, then there exists a tuple (a1, a2, b1, b2, c1, c2) ∈ S>0 such that
(ci, j , c j,k, ck,i) = ∆((a1, a2, b1, b2, c1, c2)).

Proof. Choose i ′, j ′, k ′ as in Lemma 5.1, that is,

ci ′, j ′ = c j ′,k′ = ck′,i ′ = 1. (8)

By Lemma 4.3,

gcd(ck,k′, c j ′,k) = gcd(ci,i ′, ck′,i) = gcd(c j, j ′, ci ′, j) = 1.

Using the Ptolemy relations (Theorem 3.3 and also Remark 3.2(1)) and
Equation (8), we obtain

ci ′,k = ck,k′ + c j ′,k,

c j ′,i = ci,i ′ + ck′,i ,

ck′, j = c j, j ′ + ci ′, j .
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Figure 7. A triangle (a, b, c) and its surroundings.

Again by the Ptolemy relations, we now obtain

ci, j = ci,i ′ck′, j + ck′,i ci ′, j = ci,i ′c j, j ′ + ci,i ′ci ′, j + ck′,i ci ′, j ,

c j,k = ci ′,kc j, j ′ + c j ′,kci ′, j = ck,k′c j, j ′ + c j ′,kc j, j ′ + c j ′,kci ′, j ,

ck,i = ck,k′c j ′,i + c j ′,kck′,i = ck,k′ci,i ′ + ck,k′ck′,i + c j ′,kck′,i ,

and hence ∆((ck,k′, c j ′,k, ci,i ′, ck′,i , c j, j ′, ci ′, j)) = (ci, j , c j,k, ck,i), as desired.

We now show a converse to Proposition 5.3, namely that every triple in the
image of S>0 under the map ∆ actually appears as labels of a triangle cut out of
some classic Conway–Coxeter frieze.
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PROPOSITION 5.4. Let (a1, a2, b1, b2, c1, c2) ∈ S>0. Then there exists a classic
Conway–Coxeter frieze C = (ci, j) and i 6 j 6 k such that (ci, j , c j,k, ck,i) =

∆((a1, a2, b1, b2, c1, c2)).

Proof. By Lemma 4.5, there are three classic Conway–Coxeter friezes C̃ = (c̃i, j),
C ′ = (c′i, j), C ′′ = (c′′i, j) such that

c̃1,2 = 1, c̃2,` = a1, c̃`,1 = a2,

c′1,2 = 1, c′2,`′ = b1, c′`′,1 = b2,

c′′1,2 = 1, c′′2,`′′ = c1, c′′`′′,1 = c2

for some `, `′, `′′. Let T̃ ,T ′,T ′′ be the corresponding triangulations of some
regular polygons. We glue these three triangulations together in such a way that
the edges with labels c̃1,2, c′1,2, c′′1,2 become edges of an inner triangle and obtain
a new triangulation T . In the classic Conway–Coxeter frieze C corresponding to
T , this inner triangle carries labels ci ′, j ′ = c j ′,k′ = ck′,i ′ = 1 for some i ′, j ′, k ′.
Moreover, there are i, j, k such that

ci,i ′ = b1, ck′,i = b2, c j, j ′ = c1, ci ′, j = c2, ck,k′ = a1, c j ′,k = a2.

In other words, our triangulation T has the shape as in Figure 7. Using the
Ptolemy relations (Theorem 3.3) several times (as in the proof of Proposition 5.3),
we obtain (ci, j , c j,k, ck,i) = ∆((a1, a2, b1, b2, c1, c2)).

Our goal is now to describe the image of S>0 = S∩Z6
>0 under the map∆ : S→

Z3. The strategy will be the following. For a given triple (a, b, c) ∈∆(S>0)⊆ Z3
>0,

imagine that the preimage of (a, b, c) under ∆ is an iceberg. We are looking for
a nonnegative preimage, that is, for a place on the iceberg that is not under water.
In the first step, we find any place on the iceberg (Theorem 5.6); the second step
(Theorem 5.9) is to move this solution (using Lemma 5.8) to the dry peak of the
iceberg.

Theorem 5.10 clarifies the precise condition for (a, b, c) to be in the image,
Theorem 5.11 collects all these results and states the complete classification of
triangles appearing in classic Conway–Coxeter friezes.

DEFINITION 5.5. For a prime number p and n ∈ N, we denote by νp(n) ∈ Z>0

the exponent of p in the prime factorization of n, that is, pνp(n) divides n but
pνp(n)+1 does not divide n. We call νp(n) the p-valuation of n.

THEOREM 5.6. Let a, b, c ∈ N be such that

d := gcd(a, b) = gcd(b, c) = gcd(a, c),
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and assume that either

ν2(a) = ν2(b) = ν2(c) = 0 or |{ν2(a), ν2(b), ν2(c)}| > 1.

Then there exist a1, b2 ∈ Z such that

a1a + bb2 = c and gcd(a1, b) = gcd(a, b2) = 1,

that is, ∆((a1, b, a − b2, b2, 0, 1)) = (a, b, c).

REMARK 5.7. Suppose a, b, c satisfy the assumptions in Theorem 5.6. Then
either all of a, b, c are odd or we have |{ν2(a), ν2(b), ν2(c)}| = 2 and the maximal
value of {ν2(a), ν2(b), ν2(c)} is attained only once. (In fact, for the second part,
we use the condition on the greatest common divisors being equal.)

Proof. We set a′ := a/d , b′ := b/d and c′ := c/d . In particular, a′ and b′ are
coprime, so we may choose u, v ∈ Z such that

ua′ + vb′ = 1. (9)

Then multiplication by c yields

uc′a + vc′b = c. (10)

For any k ∈ Z, set

a1 := uc′ + kb′, b2 := vc′ − ka′.

Then
a1a + bb2 = (uc′ + kb′)a + b(vc′ − ka′) = c

since kb′a = bka′ by the definition of a′, b′.
It remains to find some k ∈ Z such that in addition, gcd(a1, b) = gcd(a, b2) = 1.
We first claim that gcd(a1, b′) | c′; in fact, we have

gcd(a1, b′) = gcd(uc′ + kb′, b′) = gcd(uc′, b′) | uc′

and since b′ and u are coprime by (9), the claim follows.
Moreover, b′ and c′ are coprime by definition, so the above claim yields

gcd(a1, b′) = 1 and we obtain

gcd(a1, b) = gcd(a1, b′d) = gcd(a1, d). (11)

Similarly,
gcd(a, b2) = gcd(b2, d). (12)
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This means that it suffices to find suitable k ∈ Z such that gcd(a1, d) = 1 =
gcd(b2, d).

If d = 1, then we are clearly done. So assume d > 1 and let d =
∏r

i=1 pei
i

be the prime factorization (so pi 6= p j for i 6= j). The idea now is to
consider each prime divisor pi separately and find possible numbers ki such that
gcd(a1, pi) = 1 = gcd(b2, pi). This leads to different congruences and finally an
overall suitable k ∈ Z such that gcd(a1, pi) = 1 = gcd(b2, pi) for all i = 1, . . . , r
is constructed by using the Chinese remainder theorem.

Consider first an i with pi > 2. If pi divides b′, then pi does not divide c′ (by
definition) and pi does not divide u by (9). Thus we have gcd(uc′, pi) = 1 and
hence

gcd(a1, pi) = gcd(uc′ + kb′, pi) = 1

for any k. If pi does not divide b′, then gcd(a1, pi) = gcd(uc′ + kb′, pi) = 1 for
all but one k ∈ {0, . . . , pi − 1} (using that b′ is invertible modulo pi ). Thus we
get in all circumstances

|{k ∈ {0, . . . , pi − 1} | gcd(a1, pi) = 1}| > pi − 1.

It follows by symmetry that

|{k ∈ {0, . . . , pi − 1} | gcd(pi , b2) = 1}| > pi − 1.

But 2(pi − 1) > pi by assumption; thus we find a ki ∈ {0, . . . , pi − 1} such that
gcd(a1, pi) = gcd(pi , b2) = 1.

If pi = 2, then d and hence all of a, b, c are even. It follows from Remark 5.7
that precisely one of a′, b′, c′ is even.

If c′ is even, then a′, b′ are odd. But then a1 and b2 are both congruent to k
modulo 2; thus it suffices to choose any ki := k odd.

The last case is when a′ or b′ is even. By symmetry, we can assume that a′ is
even (and hence b′ and c′ are odd). But then a1 ≡ u + k (mod 2) and b2 ≡ v ≡

1 (mod 2), where the last congruence follows from (9). Thus we may choose any
ki := k such that u + k is odd.

Note that in all the above cases, the choice of ki is independent of adding
multiples of pi . So this yields a system of congruences

k ≡ ki (mod pi) for i = 1, . . . , r.

The Chinese remainder theorem now gives a solution for k as desired.

To understand the image of ∆, we still need some more preparations. The
following lemma describes a special element in a nice group of transformations
leaving ∆ invariant.
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LEMMA 5.8. Let x := (a1, a2, b1, b2, c1, c2) ∈ S, t ∈ Z and

Γt(x) := (a1t − a2, a1(1− t)+ a2,−b2, b1 + b2(t + 1), c1t + c2(t − 1), c1 + c2).

Then Γt(x) ∈ S and ∆(x) = ∆(Γt(x)).

Proof. For the first claim, note that Γt(x) is given by a block diagonal matrix with
2 × 2-matrices in SL2(Z) on the diagonal. Therefore, elements in S are mapped
to elements in S. For the second claim, just evaluate ∆.

THEOREM 5.9. Let a, b, c ∈ N be such that

d := gcd(a, b) = gcd(b, c) = gcd(a, c),

and assume that either

ν2(a) = ν2(b) = ν2(c) = 0 or |{ν2(a), ν2(b), ν2(c)}| > 1.

Then there exists a tuple (a1, a2, b1, b2, c1, c2) ∈ S ∩ Z6
>0 such that

∆((a1, a2, b1, b2, c1, c2)) = (a, b, c).

Proof. By symmetry, we may assume that c 6 a and c 6 b. Since we have the
same assumptions as in Theorem 5.6, we get a1, b2 ∈ Z such that a1a + bb2 = c
and gcd(a1, b) = gcd(a, b2) = 1. At least one of a1, b2 must be nonnegative (since
a, b, c ∈ N), so without loss of generality we can assume a1 > 0.

If a1 = 0, then b = 1 since gcd(a1, b) = 1; but then ∆((0, 1, a − c, c, 0, 1)) =
(a, b, c) and we are finished (note that gcd(a−c, c) = gcd(a, c) = gcd(a, b) = 1).

Thus assume that a1 > 0 and let a2 := b, b1 := a − b2, c1 := 0, and c2 := 1.
Then ∆((a1, a2, b1, b2, c1, c2)) = (a, b, c) and indeed (a1, a2, b1, b2, c1, c2) ∈ S.
However, b1 and b2 may be negative in general, although a1, a2, c1, c2 > 0.

We now show that applying the transformation Γt of Lemma 5.8 several times
eventually produces a tuple in S ∩Z6

>0. In fact, let t := da2/a1e ∈ N and consider

Γt((a1, a2, b1, b2, c1, c2)) =: (ã1, ã2, b̃1, b̃2, c̃1, c̃2) ∈ S.

Then by the definition of t , we have

ã1 = a1t − a2 > 0,
ã2 = a1(1− t)+ a2 > 0,
c̃1 = c1t + c2(t − 1) = t − 1 > 0,
c̃2 = c1 + c2 = 1 > 0.
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Moreover, we claim that b̃1 = −b2 > 0; in fact, a1a + bb2 = c 6 a and since
a1a > a, we conclude b2 6 0.

If b̃2 > 0 as well, then we are finished since (ã1, ã2, b̃1, b̃2, c̃1, c̃2) ∈ S ∩Z6
>0 as

desired. Otherwise, using that b2 6 0, we get

0 > b̃2 = b1 + b2(t + 1) = b1 + b2(da2/a1e + 1) > b1 + b2(a2/a1 + 2)

=
1
a1
(a1b1 + a2b2 + 2a1b2) =

c + a1b2

a1
=

c
a1
+ b2 > b2.

If ã1 = 0, then ã2 = 1 (recall that gcd(ã1, ã2) = 1) and c = b̃2 > 0 (use the
definition of ∆ and Lemma 5.8) and we are finished. Thus, assume that ã1 > 0.
But then we may replace (a1, a2, b1, b2, c1, c2) by (ã1, ã2, b̃1, b̃2, c̃1, c̃2) and repeat
the same argument. Since 0 > b̃2 > b2, by induction we will eventually obtain
(ã1, ã2, b̃1, b̃2, c̃1, c̃2) ∈ S ∩ Z6

>0 as desired.

We now prove a converse to Theorem 5.9.

THEOREM 5.10. Let a, b, c ∈ N be such that d := gcd(a, b) = gcd(b, c) =
gcd(a, c), and assume that there exists (a1, a2, b1, b2, c1, c2) ∈ S ∩ Z6

>0 such that

∆((a1, a2, b1, b2, c1, c2)) = (a, b, c).

Then either

ν2(a) = ν2(b) = ν2(c) = 0 or |{ν2(a), ν2(b), ν2(c)}| > 1.

Proof. We prove the claim indirectly. Assume that ν2(a)= ν2(b)= ν2(c)= `>1;
thus we may write a = 2`ã, b = 2`b̃, c = 2`c̃ with ã, b̃, c̃ being odd. Let
(a1, a2, b1, b2, c1, c2) ∈ S∩Z6

>0 be such that∆((a1, a2, b1, b2, c1, c2)) = (a, b, c).
Then by Definition 5.2, we have

a = b1(c1 + c2)+ b2c2, (13)
b = a1c1 + a2(c1 + c2), (14)
c = a1(b1 + b2)+ a2b2. (15)

We claim that this implies

c1 + c2 ≡ b2 ≡ a1 (mod 2),
c1 ≡ a2 ≡ b1 + b2 (mod 2).

In fact, consider Equations (13)–(15). Since a, b, c are even by assumption, the
two summands on the right-hand side of each equation are both even or both odd.
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Suppose that in (13), both summands are even. The other case is dealt with
similarly; the details are left to the reader. We distinguish two cases. If b1 is even,
then b2 is odd (by the definition of S); hence b1 + b2 is odd. Since b2 is odd, our
assumption on (13) implies that c2 is even. Then c1 is odd (again by the definition
of S); thus c1 + c2 is odd. But a1, a2 cannot both be even (by the definition of S),
so (14) implies that a1 and a2 are both odd. This proves the claim on the above
congruences in case b1 is even. If b1 is odd, then our assumption on (13) implies
that c1 + c2 is even. By the definition of S, we conclude that c1 and c2 are both
odd. Then the assumption on (13) yields that b2 is even. Then b1 is odd (by the
definition of S) and b1 + b2 is odd. Now (14) implies that a1 is even. So a2 is odd
(by the definition of S), and this completes the proof of the claim.

Hence, for the values of a1, a2, b1, b2, c1, c2, c1 + c2 modulo 2, only the
following three cases are possible (recall that b1, b2 cannot both be even by the
definition of S):

b1 b2 a1 a2 c1 c2 c1 + c2

0 1 1 1 1 0 1
1 0 0 1 1 1 0
1 1 1 0 0 1 1

By the definition of S, the numbers b1 and b2 are coprime, so we can choose
u, v ∈ Z such that

ub1 − vb2 = 1. (16)

Together with (13), this yields

b1(c1 + c2)+ b2c2 = a = aub1 − avb2;

hence b1 | c2 + av and b2 | c1 + c2 − au (using that b1 and b2 are coprime by the
definition of S). So there exists k1, k2 ∈ Z with

c1 + c2 = au − k1b2, c2 = −av + k2b1.

Using Equations (13) and (16), a = a + (k1 − k2)b1b2. Hence, we can choose
k1 = k2 (for the case b1 = 0 or b2 = 0, this is clear a priori). More precisely,
from the possible parities in the above table, one sees that k has to be odd in all
circumstances.

Now we get from Equations (14) and (15) that

b = a1(a(u + v)− k(b1 + b2))+ a2(au − kb2),

c = a1(b1 + b2)+ a2b2,

to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2020.13
Downloaded from https://www.cambridge.org/core. Technische Informationsbibliothek (TIB Hannover), on 27 Jun 2020 at 10:52:01, subject

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2020.13
https://www.cambridge.org/core


Frieze patterns with coefficients 31

which implies

b = a(a1(u + v)+ a2u)− k(a1(b1 + b2)+ a2b2)

= 2`ã(a1(u + v)+ a2u)− k2`c̃
= 2`(ã(a1(u + v)+ a2u)− kc̃).

Thus because ã, c̃ and k are odd and b̃ = ã(a1(u + v) + a2u) − kc̃ is odd as
well, we get that a1(u + v)+ a2u is even. Using this fact and the fact that u, v are
coprime by (16), the above table extends to:

b1 b2 a1 a2 u v

0 1 1 1 1 0
1 0 0 1 0 1
1 1 1 0 1 1

But each of these three congruences for b1, b2, u, v contradicts Equation (16).

As an immediate corollary to Theorems 5.9 and 5.10, we obtain the main result
of this section, giving a complete classification of triples appearing as labels of
triangles in classic Conway–Coxeter friezes.

THEOREM 5.11. Let a, b, c ∈ N be such that d := gcd(a, b) = gcd(b, c) =
gcd(a, c). Then there exists (a1, a2, b1, b2, c1, c2) ∈ S ∩ Z6

>0 such that

∆((a1, a2, b1, b2, c1, c2)) = (a, b, c)

if and only if either

ν2(a) = ν2(b) = ν2(c) = 0 or |{ν2(a), ν2(b), ν2(c)}| > 1.

THEOREM 5.12. Let a, b, c ∈ N. Then the triple (a, b, c) appears as labels of a
triangle in a classic Conway–Coxeter frieze if and only if gcd(a, b) = gcd(b, c)
= gcd(a, c) and

ν2(a) = ν2(b) = ν2(c) = 0 or |{ν2(a), ν2(b), ν2(c)}| > 1.

Proof. By Propositions 5.3 and 5.4 and Lemma 4.3, a triple (a, b, c) appears as
labels of a triangle in a classic Conway–Coxeter frieze if and only if gcd(a, b) =
gcd(b, c) = gcd(a, c) and if there exists a tuple (a1, a2, b1, b2, c1, c2) ∈ S ∩ Z6

>0
such that

∆((a1, a2, b1, b2, c1, c2)) = (a, b, c).

The claim now follows by Theorem 5.11.
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6. Finiteness

In this section, we prove finiteness results on the number of possible frieze
patterns with coefficients over subsets R ⊆ C. Our main interest is in frieze
patterns with coefficients over N, but it will turn out that our finiteness result
holds for arbitrary subsets R of C without an accumulation point in C.

The following result is the key step. It is a generalization of an analogous result
for classic frieze patterns; see [7, Theorem 3.6].

We recall some standard notation [3]. For a frieze pattern with coefficients
C = (ci, j) of height n as in Definition 2.1, we call the sequence (ci,i+2)i∈Z
the quiddity cycle of C. Moreover, for a tame frieze pattern we have ci,i+2 =

cn+i+3,n+i+5 by glide symmetry (see Theorem 2.12); hence the quiddity cycle is
completely determined by any (consecutive) subsequence of length n + 3.

LEMMA 6.1. Let R ⊆ C \ {0} be a subset such that

M := inf{|x | : x ∈ R} > 0.

Let C = (ci, j) be a frieze pattern with coefficients of height n > 1 over R. Consider
the boundary sequence (c0,1, c1,2, . . . , cn+2,n+3) and set

P := max{|ci,i+1| : 0 6 i 6 n + 2}.

If P > 1, then every entry in the quiddity cycle of C has absolute value at most

P2(P M + (n − 1)P2
+ M)

M2
.

Proof. We set B := P2(P M + (n − 1)P2
+ M)/M2 for brevity. Note that

B > 0 since P > 0 and M > 0 by assumption. To ease notation, we also set
di := ci,i+1 for all i ∈ Z.

Suppose for a contradiction that there exists an entry x1 in the quiddity cycle
such that |x1| > B. Then we consider the corresponding two consecutive rows in
the frieze pattern C, with notation as in the following figure:

0 d j x1 x2 . . . xn−1 xn d j−1 0
0 d j+1 y1 y2 . . . yn−1 yn d j 0.

Note that the boundaries are as indicated because of the glide symmetry on the
boundary entries; see Remark 2.2.

The strategy of the proof is to proceed inductively along the rows. More
precisely, we want to use the following two conditions as induction hypotheses:
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(1) |xk | > ((M(MB− P2)/P2)− (k − 2)P2)(1/M) for k = 2, . . . , i + 1,

(2) |yk |<(MP2/(M(MB− P2)− (k − 2)P4))(P2
+ M |xk+1|) for k= 2, . . . , i .

For the base of the induction, let us check that condition (1) holds for k = 2 and
k = 3 and that condition (2) holds for k = 2.

By the defining condition for frieze patterns with coefficients, the triangle
inequality, the definition of P and our assumption that P > 1, we have

|x1 y1| = |d j d j+2 + d j+1x2| 6 |d j d j+2| + |d j+1x2| 6 P2
+ P|x2| 6 P2(1+ |x2|).

Using the definition of M and the assumption |x1| > B this yields

M 6 |y1| 6
P2(1+ |x2|)

|x1|
<

P2(1+ |x2|)

B
. (17)

Solving for |x2|, we obtain

|x2| >
MB
P2
− 1 =

MB− P2

P2
, (18)

which is condition (1) for k = 2.
Going one step to the right, the defining condition for frieze patterns with

coefficients reads as
x2 y2 − x3 y1 = d j d j+3.

By similar arguments as above and by using Equations (17) and (18), we conclude

M 6 |y2| 6
|d j d j+3| + |x3 y1|

|x2|
6 P2 B + |x3| + |x3| · |x2|

B|x2|

= P2

(
1
|x2|
+
|x3|

B

(
1
|x2|
+ 1

))
< P2

(
P2

MB− P2
+
|x3|

B

(
P2

MB− P2
+ 1

))
=

P2

MB− P2
(P2
+ M |x3|).

This shows Equation (2) for k = 2.
Solving this inequality for |x3| then gives

|x3| >

(
M(MB− P2)

P2
− P2

)
1
M

and this is Equation (1) for k = 3.
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Thus we have shown that we can indeed use conditions (1) and (2) as induction
hypotheses for an induction on i .

For the induction step, we have to show that condition (2) holds for i + 1 and
that condition (1) holds for i + 2.

From the defining condition of frieze patterns with coefficients, we have

xi+1 yi+1 − xi+2 yi = d j d j+i+2

and hence

|yi+1| 6
|d j d j+i+2| + |xi+2| · |yi |

|xi+1|
6

P2
+ |xi+2| · |yi |

|xi+1|
.

Using the induction hypothesis for |yi |, we deduce

|yi+1| <
P2

|xi+1|
+

MP2
|xi+2|

M(MB− P2)− (i − 2)P4

(
P2

|xi+1|
+ M

)
.

Now we also plug in the induction hypothesis for |xi+1| and get

|yi+1| <
P4 M

M(MB− P2)− (i − 1)P4

+
MP2
|xi+2|

M(MB− P2)− (i − 2)P4

(
P4 M

M(MB− P2)− (i − 1)P4
+ M

)
=

MP2

M(MB− P2)− (i − 1)P4
(P2
+ M |xi+2|).

This proves the induction step for |yi+1|.
Now we solve the last inequality for |xi+2|. Since M 6 |yi+1|, this yields

|xi+2| >

(
M(MB− P2)− (i − 1)P4

P2
− P2

)
1
M
=

(
M(MB− P2)

P2
− i P2

)
1
M

and this proves the inductive step for |xi+2|.
Noting that |xn+1| = |d j−1| 6 P , our induction argument eventually yields

|yn| <
MP3

M(MB− P2)− (n − 2)P4
(P + M). (19)

On the other hand, by the definition of B, we have

M(MB− P2)− (n − 2)P4
= P3 M + (n − 1)P4

− (n − 2)P4
= P3(M + P).

Together with Equation (19) this implies |yn| < M , a contradiction to the
definition of M and the fact that the frieze pattern C has nonzero entries by
assumption. This means that the assumption |x1| > B was wrong and hence every
entry in the quiddity cycle of C has absolute value at most B, as claimed.
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REMARK 6.2. Lemma 6.1 does not hold without the assumption P > 1. As an
example, consider the following frieze pattern with coefficients

. . .

0 1
2

1
2

1
2 0

0 1
2 1 1

2 0

0 1
2

1
2

1
2 0

0 1
2 1 1

2 0
. . .

This is obtained from a classic Conway–Coxeter frieze pattern of height n = 1
by scaling with the factor 1

2 ; see Remark 2.3. With the notation of Lemma 6.1 we
have R = 1

2N, the positive half-integers, and M = 1
2 = P . Then the bound given

in Lemma 6.1 is equal to 3
4 , which is clearly not an upper bound for all entries in

the quiddity cycle.

As a consequence of Lemma 6.1, we obtain the following finiteness result
for frieze patterns with coefficients over subsets of complex numbers without
accumulation points. This generalizes [7, Corollary 3.8] from classic frieze
patterns to frieze patterns with coefficients.

PROPOSITION 6.3. Let R ⊆ C \ {0} be a subset without accumulation point in C.
Let n ∈ Z>0 and fix a boundary sequence in Rn+3. Then there are only finitely
many frieze patterns with coefficients of height n over R with the given boundary
sequence.

Proof. For n = 0, there is only one possible frieze pattern with coefficients for
any given boundary sequence; see Example 2.4.

For n > 1, we want to use Lemma 6.1. Recall that frieze patterns with
coefficients can be scaled (see Remark 2.3). The existence of only finitely
many frieze patterns with coefficients over R and the property of R not having
an accumulation point are invariant under scaling, so we can assume that our
boundary sequence satisfies the assumption P > 1 in Lemma 6.1.

By assumption, the origin is not an accumulation point and R satisfies the
assumption of Lemma 6.1. Moreover, again by assumption, every closed disk in C
contains only finitely many elements from R. Then Lemma 6.1 implies that there
are only finitely many elements of R, which can appear in the quiddity cycle of a
frieze pattern with coefficients having the given boundary sequence. However, any
nonzero frieze pattern with coefficients is determined by the boundary sequence
and the quiddity cycle, and this proves the claim.
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