
Integral points of bounded height
via universal torsors

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation von

Florian Alexander Wilsch, M.Sc.

2020



Referent: Prof. Dr. Ulrich Derenthal
Korreferent: Prof. Dr. Antoine Chambert-Loir
Korreferent: Prof. Dr. Per Salberger

Tag der Promotion: 23. September 2019

2



Abstract

A conjecture of Manin’s relates the number of rational points of bounded height
on Fano varieties with their geometric properties. Analogously to this conjec-
ture on rational points, we study the distribution of integral points of bounded
height on three varieties: on a smooth Fano threefold of Picard number 2 and
type 30 in the Mori–Mukai classification, on a quartic del Pezzo surface with
an A1- and an A3-singularity, and on a toric threefold. We determine asympto-
tic formulas and interpret the leading term geometrically. For the proofs, we
parametrize integral points using universal torsors, and use analytic techniques
to count integral points on the torsor. This seems to be the first application
of the torsor method to integral points. The asymptotic formula for our toric
variety contradicts a result by Chambert-Loir and Tschinkel. We describe an
obstruction that explains this contradiction, and study its relation with some
constants that appear in asymptotic formulas for the number of integral points
of bounded height.

Kurzfassung

Eine Vermutung von Manin stellt einen Bezug zwischen der Anzahl rationaler
Punkte beschränkter Höhe auf Fano-Varietäten und geometrischen Eigenschaf-
ten her. Analog zu dieser Vermutung für rationale Punkte untersuchen wir die
Verteilung ganzer Punkte beschränkter Höhe auf drei Varietäten: auf einer glat-
ten dreidimensionalen Fano-Varietät von Picardrang 2 und Typ 30 in der Mori–
Mukai-Klassifikation, auf einer quartischen del-Pezzo-Fläche mit A1- und A3-
Singularität und auf einer dreidimensionalen torischen Varietät. Wir bestimmen
asymptotische Formeln und interpretieren den führenden Term geometrisch. In
den Beweisen parametrisieren wir die ganzen Punkte mit Hilfe universeller Tor-
sore, und zählen ganze Punkte auf den universellen Torsoren mit analytischen
Methoden. Dies scheint die erste Anwendung der Torsor-Methode zum Zählen
ganzer Punkte zu sein. Die asymptotische Formel für die torische Varietät steht
im Widerspruch zu einem Ergebnis von Chambert-Loir und Tschinkel. Wir be-
schreiben eine Obstruktion, die diesen Widerspruch erklärt und untersuchen
ihren Zusammenhang mit einigen Konstanten, die ein Bestandteil asymptoti-
scher Formeln für die Anzahl ganzer Punkte beschränkter Höhe sind.

Keywords: Integral points, universal torsors, Manin’s conjecture
Schlagworte: Ganze Punkte, universelle Torsore, Manins Vermutung
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Introduction

A classical problem in number theory is the solubility of Diophantine equations:
Given a system of polynomial equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0

with integral coefficients, does it have solutions over the integers? This kind of
problem is related to algebraic geometry: Such a system of polynomials defines
an algebraic variety, and solutions correspond to points on the variety. We can
then ask whether solutions exist, and, if so, how many. If there are infinitely
many, we have the following quantitative question: For some positive bound B,
how many solutions in integers between −B and B are there, and how does this
number behave as B grows? In geometric terms, these solutions are those in
a certain region of the variety: points of height at most B. Moreover, we can
study the relation between the answer to these arithmetic questions and the
geometry of the corresponding variety.

Manin’s conjecture on rational points
One variant of this problem is Manin’s conjecture [FMT89, BM90] about the
number of rational points of bounded height on Fano varieties. Let X be a Fano
variety over the field Q of rational numbers, by which we will mean a smooth,
projective Q-variety whose anticanonical bundle ω∨

X is ample. We equip X with
an anticanonical height function. If ω∨

X is even very ample, we can construct one
as follows: Choose an anticanonical embedding f : X → Pn. A rational point
x on Pn can be represented as x = (x0 : · · · : xn), where the xi are coprime
integers. This representation is then unique up to a sign. We define the height
of such a point to be H(x0 : · · · : xn) = max{|x0| , . . . , |xn|}, and the height of
a rational point x ∈ X(Q) to be the height H(x) = H(f(x)) of its image. We
can then ask how the number

#{x ∈ X(Q) | H(x) ≤ B}

of rational points of bounded height behaves asymptotically.
This number might be dominated by points on strict subvarieties – such

accumulating subvarieties should be excluded from the analysis. For their com-
plement V , Manin’s conjecture predicts that the number of rational points of
bounded height

N(B) = #{x ∈ V (Q) | H(x) ≤ B}

9
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is asymptotically
cB(log B)ρ−1,

where ρ = rk Pic X is the Picard number of X. Peyre [Pey95, Pey03] gave a
conjectural interpretation of the leading constant c as a product of a constant
α determined by the geometry of the effective cone, a cohomological constant
β (cf. [BT98]) related to the Brauer group, and an adelic volume τ that can be
regarded as a product of local densities.

Results of this kind include applications of the circle method for varieties of
large dimension compared to their degree (e.g. [Bir62, Ski97, BHB17, FM17]),
and varieties with a group action such as generalized flag varieties [FMT89], toric
varieties [BT98], and other equivariant compactifications [CLT02, STBT04,
STBT07]. Besides such general classes of varieties, there are results for e.g.
some smooth del Pezzo surfaces [Bre02, BF04, BB11].

The class of varieties studied can be expanded to include singular varieties.
In this case, the counting problem can be compared to that on a desingulariza-
tion, which is smooth, but no longer Fano, although the anticanonical bundle
is typically still big and nef. Peyre describes a framework for the interpretation
of asymptotic formulas for rational points on more general smooth almost Fano
varieties [Pey03]. Asymptotic formulas for singular or weak del Pezzo surfaces
include [BB07, BBD07, BBP12] and many others.

Integral points of bounded height
Rational points on a complete variety X, and integral points on an arbitrary
proper model X coincide as a consequence of the valuative criterion for proper-
ness. On non-complete varieties, this is no longer the case. A set-up analogous
to Manin’s conjecture in the case of integral points is the following: Let X be a
smooth, projective variety, and D a divisor on X with strict normal crossings,
such that the log-anticanonical bundle ω(D)∨ is ample, or at least big. Let
U = X −D, let U be an integral model of U , and let H be a log-anticanonical
height function. Again, the number of integral points of bounded height on
U might be dominated by points on a subvariety, and one should investigate
the number of integral points of bounded height outside these accumulating
subvarieties.

There are several results on this kind of problem: Varieties with a large num-
ber of variables compared to their degree can be studied using the circle method
(e.g. [Bir62, Sch85]). In addition, there are numerous results of this kind on va-
rieties with a group action, such as algebraic groups and homogeneous spaces
(e.g. [DRS93, EM93, BR95, EMS96, Mau07, GOS09, WX16]) and partial equiv-
ariant compactifications [Mor99, CLT10b, CLT12, TBT13] (not all of them in
the geometric setting described above). In these cases, the group structure is
exploited for the proofs, for example using harmonic analysis. In [CLT10a],
Chambert-Loir and Tschinkel describe a framework that allows the geomet-
ric interpretation of asymptotic formulas for the number of integral points of
bounded height, similar to Peyre’s in the case of rational points. In this case,
asymptotic formulas take the form

cB(log B)b−1,
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where the constant c again consists of “local densities” (some of which are
however supported on the boundary divisor D), cohomological constants, and
combinatorial data associated with the effective cone and the divisor D, while
the exponent b−1 depends on the Picard number of U and incidence properties
of D.

Results
Our main results are similar asymptotic formulas, including on varieties without
such kinds of group action.

• A Fano threefold obtained by blowing up P3 in a plane conic. This variety
has Picard number 2 and is of type 30 in the Mori–Mukai-classification
of Fano threefolds [MM82]. We take U to be the complement of a plane
intersecting the conic in one or two rational points. (Chapter 3.)

• A quartic del Pezzo surface with an A1- and an A3-singularity defined by
two explicit quadratic equations in P4. We take U to be the complement
of either of the singular points and study integral points by considering
the counting problem on a desingularization. (Chapter 4.)

• The toric variety obtained by consecutively blowing up P1 × P1 × P1 in
two intersecting lines. We count points on the complement U of the two
exceptional divisors and a plane parallel to the two lines. (Chapter 5.)

The first two cases do not belong to the general classes of varieties for which
results are known. The last one is a special case of the preprint [CLT10b];
however, our asymptotic formula contradicts parts of this result by Chambert-
Loir and Tschinkel: Our exponent of log B is one less than the one in op. cit.
This exemplifies a gap in their proof of which the authors were already aware
and is explained by an obstruction preventing the existence of integral points on
a region of the toric variety that should have dominated the asymptotic formula.
We describe and analyze this obstruction and its implications on the shape of
some constants arising in asymptotic formulas. The results take the following
form:

Let X be one of the above varieties and U be one of the described open
subvarieties. Let U be a certain integral model of U , and let H be a certain log-
anticanonical height function. There exists an open, dense subvariety V ⊂ X
such that the number

N(B) = {x ∈ U(Z) ∩ V (Q) | H(x) ≤ B}

of integral points of bounded height satisfies an asymptotic formula

N(B) = cB(log B)b−1(1 + o(1)).

Here, the constant c has the following shape: It is a sum over certain max-
imal faces A of the Clemens complex, an object encoding incidence properties
of the divisor D. Such maximal faces correspond to maximal sets of divisor
components that have a common intersection point. In the first two cases, the
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sum runs over all such maximal faces built out of a maximal number of divisor
components, i.e., maximal dimensional faces. In the third case, the only maxi-
mal dimensional face has to be excluded as a consequence of an obstruction, and
we instead have to take a face that is maximal with respect to inclusion, cor-
responding to a component that does not intersect any other component of D,
but whose dimension is 1 less than the maximum. Each term term of this sum
is then a constant αA that slightly generalizes a construction by Chambert-Loir
and Tschinkel, times a product of local densities. For finite places, it is a local
density of integral points on U , and for the archimedean place, it is supported
on the intersection of the divisor components belonging to A.

For the exponent, the number b = rk Pic(U) + d + 1 is determined by the
Picard rank of U and the dimension d of these maximal faces, that is, in the first
two cases, d+1 is the maximal number of divisor components having non-empty
intersection, while in the last case, it is one less, since we had to exclude to only
maximal dimensional face. Details on the factors and terms of this constant are
given in Chapter 2.

Instead of methods exploiting a group action, which are no longer available,
we use the torsor method in the proofs of these asymptotic formulas. Universal
torsors have been defined and studied by Colliot-Thélène and Sansuc [CTS87];
their application to count rational points of bounded height goes back to Sal-
berger [Sal98], who used them to reprove Manin’s conjecture for toric varieties.
The method allows the parametrization of rational points on the variety by in-
tegral points on a universal torsor. These integral points can be regarded as
lattice points and counted using analytic techniques. The torsor method has
since been successfully applied to count rational points on a number of varieties.
Our results seem to be the first application of the method to integral points.

Outline
In Chapter 1, we provide a geometric setup and study integral points on a
two examples to exemplify heuristics and expectations for their distribution. In
Chapter 2, we recall the frameworks of Peyre and Chambert-Loir and Tschinkel
for the interpretation of asymptotic formulas. We slightly generalize a construc-
tion in [CLT10b] to non-toric varieties to define a factor αA appearing in our
asymptotic formulas. We study some of its properties and analyze its relation
to an obstruction to the Zariski density of integral points on certain parts of
varieties imposed by regular sections on certain subvarieties.

In the following three chapters, we determine asymptotic formulas for the
number of integral points on subvarieties U on the three above-mentioned vari-
eties, and interpret the formulas geometrically.



Chapter 1

Counting integral points of
bounded height

1.1 The problem
On projective varieties, rational and integral points coincide as a consequence
of the valuative criterion for properness, or, more elementarily, because it is
always possible to multiply all coordinates of a rational point (x0 : · · · : xn) by
the product of all denominators to get an integral point. For rational points, a
counting problem on a non-complete variety U can be compared to the problem
on a compactification X of U : If the rational points on the boundary X−U were
to contribute to an asymptotic formula for the compactification, the boundary
would be accumulating and should be excluded when studying Manin’s conjec-
ture on X. For integral points, this does not hold: For the notion of integral
points to make sense, we need an integral model X of X, that is, a flat and
separated Z-scheme X of finite type such that X ×Z SpecQ ∼= X. There can be
integral points on X that, as rational points, are on U , but lie on X −U modulo
a prime p, and thus are neither integral points on U nor on X − U .

The boundary X − U carries a lot of information on the distribution of
integral points. If X−U is not a divisor, we can make it one by blowing up, and
can then use embedded resolution of singularities to make it have strict normal
crossings, all without changing the variety U . We consider the log-anticanonical
bundle ωX(D)∨, and a height function H associated with it – if the bundle is
very ample, we can take a log-anticanonical embedding f : X → PN , and set
H(x) = H(f(x)), using the standard height on PN . The number

#{x ∈ U(Q) | H(x) ≤ B}

might again be dominated by points on accumulating subvarieties, which we
thus want to exclude. If we simply were to make U smaller, we would affect
the number even if we remove non-accumulating subvarieties (by also removing
some points that are integral on neither the smaller subscheme nor on its com-
plement). Removing integral points on a subvariety means only considering the
set

{x ∈ U(Z) ∩ V (Q) | H(x) ≤ B}

13



14 Chapter 1. Counting integral points of bounded height

of integral points of bounded height that, as rational points, are in the com-
plement V of such accumulating subvarieties, or more formally, integral points
whose generic point is in V . That we are counting points on the complement of
such strict subvarieties means that we should only work on schemes whose set
of integral points is Zariski dense – if it were not, integral points would all lie on
a finite set of subvarieties that we should thus all exclude, and we would count
the empty set. For rational points on Fano varieties, it would follow from a con-
jecture of Colliot-Thélène’s (e.g. [CT03, p. 174]) that the set of rational points
is Zariski dense as soon as it is non-empty; for integral points, this is wrong.
(As an elementary example, consider U = Gm,Z × A1

Z, the complement of two
lines in P2

Z. Both the anticanonical and log-anticanonical bundles are ample,
but still every integral point lies on one of the two subvarieties {±1} × A1

Z.)
In the next chapter, we will describe the machinery to associate height func-

tions with arbitrary line bundles over arbitrary number fields. In this context,
the question still makes sense as long as the log-anticanonical bundle is at least
big, that is, as long as it is in the interior of the effective cone. In this case,
there exists an open subvariety V such that the number of rational points of
bounded height on V is finite for every B.

In total, this gives a set-up for counting integral points on a non-complete
variety analogous to Manin’s conjecture: Let X be a smooth, projective variety
defined over a number field K. Let D ⊂ X be a reduced, effective divisor with
strict normal crossings, and assume that the log-anticanonical bundle ωX(D)∨

is at least big. Let U be an integral model of U = X − D. Let H : X(K) →
R>0 be a log-anticanonical height function. Consider a sufficiently small subset
V ⊂ X(K) that does not contain accumulating subvarieties. In general, V is
expected to be the complement of a thin subset; in the examples considered
here, a Zariski open subset will always suffice. If U(Z) is Zariski dense, how
does the number of integral points of bounded height

N(B) = {x ∈ U(ok) ∩ V | H(x) ≤ B}

behave asymptotically?
Note that, with D = 0, this specializes to a variant of Manin’s problem,

relaxing the requirement that the anticanonical bundle be ample, and instead
only requiring that it be big.

1.2 Example: P1 × P1 −∆P1

As an example, we consider the variety X = P1
Q × P1

Q – where the first copy of
P1
Q has the coordinate pair (x0, x1), and the second copy has the coordinate pair

(y0, y1) – together with the diagonal divisor ∆P1
Q

= V (x0y1−x1y0). An integral
model of X is X = P1

Z×P1
Z; an integral model of the open subvariety U = X−∆P1

that we want to count integral points on is U = X −∆P1
Z
. This variety is one of

the easiest possible examples that is not a partial equivariant compactification
of an algebraic group, although X is an equivariant compactification of the
symmetric variety U ∼= SL2 /T , where T is the torus of diagonal matrices. (This
type of variety is studied e.g. in [EMS96, GOS09, WX16], although U is excluded
in these results, since T is has non-trivial Q-characters.) The anticanonical
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divisor of X is ω∨
X = OX(2, 2), the diagonal ∆P1

Q
has degree (1, 1), and thus the

log-anticanonical bundle ωX(∆P1
Q
)∨ ∼= OX(1, 1) is very ample. The morphism

X → P3
Q, ((x0 : x1), (y0 : y1)) 7→ (x0y0 : x0y1 : x1y0 : x1y1).

is a log-anticanonical embedding and thus defines a log-anticanonical height
function H by composing it with the standard height function P3

Q(Q)→ R>0.
We can represent a point on X in a way such that x0, x1, y0, y1 are integers

with gcd(x0, x1) = gcd(y0, y1) = 1; this representation is unique up to the two
choices of sign. As a consequence, we have a 4-to-1-correspondence between the
sets X(Q) = X (Z) of rational points on X, respectively integral points on X ,
and the set

{(x0, x1, y0, y1) ∈ Z4 | gcd(x0, x1) = gcd(y0, y1) = 1}.

To use this expression for counting, we need to know what the height of a
point represented in such a way is, and when such a point is integral on U .
Since x0 and x1, and y0 and y1 are coprime, so are the pairwise products:
gcd(x0y0, x0y1, x1y0, x1y1) = 1. We thus get the description

H(x0, x1, y0, y1) = max{|x0y0| , |x0y1| , |x1y0| , |x1y1|}
= max{|x0| , |x1|}max{|y0| , |y1|}.

of the above log-anticanonical height function. That a point in the above repre-
sentation is an integral point on U means that it does not meet the divisor ∆P1

Z
over any point of SpecZ. For the generic point this means x0y1 − x1y0 6= 0; for
closed points pZ this means p ∤ x0y1−x1y0. A point is thus integral if and only
if x0y1 − x1y0 is a unit of Z.

Putting this together, we now have an explicit description of the counting
function:

N(B) = 1
4

#
{

(x0, x1, y0, y1) ∈ Z4
∣∣∣∣ x0y1−x1y0∈{±1},

gcd(x0,x1)=gcd(y0,y1)=1,
max{|x0|,|x1|} max{|y0|,|y1|}≤B

}
.

Using the symmetry in the two possible values of the equation and cutting up
the set into the subsets satisfying max{|x0| , |x1|} < max{|y0| , |y1|} or not, we
get

N(B) = 1
2

(
#

{
(x0, x1, y0, y1) ∈ Z4

∣∣∣∣∣
x0y1−x1y0=1,

gcd(x0,x1)=gcd(y0,y1)=1,
max{|x0|,|x1|} max{|y0|,|y1|}≤B,

max{|x0|,|x1|}<max{|y0|,|y1|}

}

+#

{
(x0, x1, y0, y1) ∈ Z4

∣∣∣∣∣
x0y1−x1y0=1,

gcd(x0,x1)=gcd(y0,y1)=1,
max{|x0|,|x1|} max{|y0|,|y1|}≤B,

max{|x0|,|x1|}≥max{|y0|,|y1|}

})
.

(1.1)

We start by analyzing the first term in this expression, which we regard as a
sum over x0 and x1∑

x0,x1∈Z,
gcd(x0,x1)=1,

|x0|,|x1|≤
√

B

#
{

(y0, y1) ∈ Z2
∣∣∣∣ x0y1−x1y0=1,

max{|y0|,|y1|}≤B/ max{|x0|,|x1|},
max{|x0|,|x1|}<max{|y0|,|y1|}

}
, (1.2)
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using the facts that the height condition and inequality imply max{|x0| , |x1|} ≤√
B and that the equation implies the coprimality condition gcd(y0, y1) = 1.

To treat such sums, we want to determine the number

Ñ(x0, x1, C) = #
{

(y0, y1) ∈ Z2 ∣∣ x0y1 − x1y0 = 1, |y0| , |y1| ≤ C
}

.

The equation has a solution (ŷ0, ŷ1) if and only if x0 and x1 are coprime; the
other solutions then have the form (ŷ0 + kx1, ŷ1 + kx0) for k ∈ Z. If we assume
that both x0 and x1 are non-zero, such a solution satisfies the inequalities if∣∣∣k + ŷ0

x1

∣∣∣ ≤ C
|x1| and

∣∣∣k + ŷ1
x0

∣∣∣ ≤ C
|x0| ,

that is, if k is in an intersection of two intervals. The number of integers in
an interval is the length of the interval with an error of at most 1. Since the
distance between the midpoints of the two intervals is∣∣∣ ŷ1

x0
− ŷ0

x1

∣∣∣ =
∣∣∣x0ŷ1−x1ŷ0

x0x1

∣∣∣ = 1
|x0x1| ≤ 1,

the error we get when replacing the intersection of the two intervals by the
smaller interval – which has length 2C/ max{|x0| , |x1|} – also is at most 1. We
thus get

Ñ(x0, x1, C) = 2C

max{|x0| , |x1|}
+ O(1), (1.3)

whenever x0 and x1 are coprime and both non-zero. If one of them, say x0, is
zero, the other one has to be 1 or −1, and the solutions are those (y0, y1) ∈ Z2

with |y0| ≤ C, y1 = x1, so (1.3) still holds.
Using this, we can now get rid of the condition

max{|x0| , |x1|} < max{|y0| , |y1|}

in (1.2). The error we introduce in doing so is∑
(x0,x1)∈Z2,

gcd(x0,x1)=1,

|x0|,|x1|≤
√

B

#
{

(y0, y1) ∈ Z2
∣∣∣ x0y1−x1y0=1,

max{|y0|,|y1|}≤max{|x0|,|x1|}

}
�

∑
x0,x1∈Z,

|x0|,|x1|≤
√

B

1� B

by (1.3). For the same reason, we can change the inequality max{|x0| , |x1|} ≥
max{|y0| , |y1|} in the second term of (1.1) to >, introducing another error� B.
Now, by exchanging the roles of x and y, we get the same estimate for the second
term and have simplified (1.1) to

N(B) =
∑

x0,x1∈Z,
gcd(x0,x1)=1,

|x0|,|x1|≤
√

B

#
{

(y0, y1) ∈ Z2
∣∣∣ x0y1−x1y0=1,

max{|y0|,|y1|}≤B/ max{|x0|,|x1|},

}
+ O(B)

=
∑

x0,x1∈Z,
gcd(x0,x1)=1,

|x0|,|x1|≤
√

B

2B

max{|x0| , |x1|}2 + O(B),
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since we have
∑

|x0|,|x1|≤B 1� B for the sum over the error terms from another
application of (1.3). We simplify this sum with a Möbius inversion and then
perform a change of variables x′

i = xi/α:

N(B) =
∑

(x0,x1)∈Z2,

|x0|,|x1|≤
√

B

∑
α|x0,x1

µ(α) 2B

max{|x0| , |x1|}2 + O(B)

=
∑
α>0

µ(α)
α2

∑
x′

0,x′
1∈Z,

|x′
0|,|x′

1|≤
√

B/α

2B

max{|x′
0| , |x′

1|}2 + O(B). (1.4)

(Note that the sums are finite and thus absolutely convergent.) Using the sym-
metry in x0 and x1, the inner sum is

4
∑

x′
0,x′

1∈Z,

|x′
0|≤|x′

1|≤
√

B/α

B

|x′
1|

2 − 2
∑

x′
0,x′

1∈Z,

|x′
0|=|x′

1|≤
√

B/α

B

|x′
1|

2 .

The second term is
8
∑

x1>0

B

|x1|2
� B,

and the first one is

8
∑

x′
1∈Z,

|x′
1|≤

√
B/α

B

|x′
1|

+ O(B) = 16B

(
log

(√
B

α

)
+ O(1)

)

= 8B log B + O(B(1 + log α)).

Plugging this back into (1.4), we arrive at

N(B) =
∑
α>0

µ(α)
α2

(
8B log B + O(B(1 + log α)

)
+ O(B)

= 8B log B
∑
α>0

µ(α)
α2 + O

(
B +

∑
α>0

B(1 + log α)
α2

)
.

So, finally, we have an asymptotic formula

N(B) = 8
ζ(2)

B log B + O(B)

for the number of integral points of bounded height on P1 × P1 −∆P1 .

This example can be regarded as an application of the torsor method. The
morphism (A2−(0, 0))×(A2−(0, 0))→ P1×P1 is an example of a universal tor-
sor. Integral points on A4

Z are simply 4-tuples (x0, x1, y0, y1) (formally, they are
morphisms SpecZ→ A4, that is, given by homomorphisms Z[x0, x1, y0, y1]→ Z,
which in turn are defined by the images of the generators). An integral point
on A4

Z is contained in the open subscheme

T = (A2
Z − V (x0, x1))× (A2

Z − V (y0, y1))
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if the image of SpecZ does not intersect the complement of T . The image of the
generic point (0) is in V (x0, x1) if x0 = x1 = 0, and the image of a closed point
(p) of SpecZ is in V (x0, x1) if p | x0, x1, and hence the image does not intersect
V (x0, x1) if gcd(x0, x1) = 1. With the analogous criterion for V (y0, y1), we can
see that the set of integral points on T is

T (Z) = {(x0, x1, y0, y1) ∈ Z4 | gcd(x0, x1) = gcd(y0, y1) = 1}.

Finally, all fibers of T → P1
Z × P1

Z are isomorphic to G2
m, with Gm(Z) = {±1},

giving the 4-to-1-parametrization. This parametrization allowed us to regard
integral points as lattice points satisfying an equation and gcd-conditions.

We will continue to use this example to illustrate constructions related to
the geometric interpretation of asymptotic formulas. Since this interpretation
involves a local-global-principle, it will be helpful to have a description of the
local solutions, that is, of the set of Zp-points on U . Completely analogous to
Z-points, the set of Zp-points is{

((x0 : x1), (y0 : y1)) ∈ P1 × P1
∣∣∣ gcd(x0,x1)=gcd(y0,y1)=1,

x0y1−x1y0∈Z×
p

}
.

This time, there is only one prime that can divide gcd(x0, x1), and thus the
coprimality condition means precisely that x0 ∈ Z×

p or x1 ∈ Z×
p (and the same

for y). We can also translate this to a condition of the absolute values: the
p-adic integer x0 is a unit if and only if its p-adic absolute value |x|p is 1, and
the last condition in the set is equivalent to saying

|x0y1 − x1y0|p = 1. (1.5)

We can also ask about the shape of this set in, say, A2 ∼= V = P1×P1−V (x0y0),
using coordinates (x, y) = (x1/x0, y1/y0). If |x|p < 1, we have x1 6∈ Z×

p , x0 ∈
Z×

p . So, by the ultrametric triangle inequality, (1.5) holds precisely if |y1|p = 1,
that is, if |y|p ≥ 1. Analogously, for |x|p > 1, the condition holds precisely if
|y|p ≤ 1. Finally, if |x|p = 1, we have |x0|p = |x1|p = 1, so (1.5) always holds if
|y|p 6= 1; if |y|p = 1, we also have |y0| = |y1| = 1, so after dividing by |x0y0|p,
the condition reads |x− y|p = 1. In total, we get

U(Zp) ∩ V (Qp) =
{

(x, y) ∈ Q2
p

∣∣∣ |x|p<1, |y|p≥1, or |x|p>1, |y|p≤1, or
|x|p=1, |y|p 6=1, or |x|p=|y|p=1, |x−y|p=1

}
.

1.3 Distribution of integral points
Moreover, this example highlights a difference in the distribution of rational
and integral points. In our geometric context, we would expect that the ratio-
nal points are dense in a component of the set of real points as soon as there is
at least one such rational point. (This holds true in cases where weak approx-
imation holds, or, more generally, when the Brauer–Manin obstruction is the
only one to weak approximation). Their distribution factors into asymptotic
formulas as a volume of X(R) with respect to a certain measure, that can be
thought of as a real density. We cannot expect something similar to happen
for integral points. Already for A1, we can see that Z is far from dense in R,
and the same holds for integral points in the example above. Note that, for this
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Figure 1.1: Integral points of height ≤ 15 on P1 × P1 − ∆P1 .

reason, when studying strong approximation for integral points, X(R) has to
be omitted or replaced by its set π0(X(R)) of connected components.

Both examples demonstrate a different behaviour of integral points that
appears in the geometric interpretation: They accumulate around the boundary.
In the case of A1 = P1 − {∞}, every neighbourhood of ∞ contains almost all
integral points, since the absolute value of almost all integers is larger than
a fixed number. In the previous example, again regarding the affine patch V
defined by x0, y0 6= 0, a point (x, y) = (x1/x0, y1/y0) is close to the diagonal if
|x− y| is small, i.e. if |x1/x0 − y1/y0| is small, with a similar picture on the
affine patch x1, y1 6= 0. Writing ∆P1 as a union of two suitable compact sets,
one in each of these two affine patches, we can fit a set of the form{∣∣∣∣x1

x0
− y1

y0

∣∣∣∣ , ∣∣∣∣x0

x1
− y0

y1

∣∣∣∣ < ϵ

}
into every analytic neighbourhood of ∆P1 . Every point outside such a neigh-
bourhood then satisfies

ϵ ≥
∣∣∣∣x1

x0
− y1

y0

∣∣∣∣ =
∣∣∣∣x1y0 − x0y1

x0y0

∣∣∣∣ =
∣∣∣∣ 1
x0y0

∣∣∣∣ ,
and the same holds for |x1y1|, so there are only finitely many points. In particu-
lar, no real point p ∈ U(R) can be approximated by integral points, in the sense
that there cannot be a sequence of integral points (pn)n with pn 6= p converging
to it. On the other hand, every real point (t, t) ∈ ∆P1(R) can be approximated
by integral points: Take a sequence

x
(n)
1

x
(n)
0

→ t,
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Figure 1.2: Integral points of height ≤ 29 on P2 − {pt}. To the
right: the same integral points regarded as points on Bl{pt}P2 −E;
the exceptional divisor E is a horizontal line.

with coprime numerator and denominator, and such that x
(n)
1 /x

(n)
0 6= t for

all n; in particular, we then have x
(n)
0 → ∞. For every positive integer n, let

(y(n)
0 , y

(n)
1 ) be an integral solution of x

(n)
0 y

(n)
1 −x

(n)
1 y

(n)
0 = 1. (By the coprimality

assumption, such a solution exists.) Then we also have

y
(n)
1

y
(n)
0

= x
(n)
0 y

(n)
1

x
(n)
0 y

(n)
0

= x
(n)
1 y

(n)
0 + 1

x
(n)
0 y

(n)
0

= x
(n)
1

x
(n)
0

+ 1
x

(n)
0 y

(n)
0

→ t,

and get a sequence of points converging to (t, t).

1.4 Example: Pn − {pt}
In general, such a strong statement need not hold: There are well-behaved
varieties U with infinitely many points away from the boundary, and whose
integral points are even analytically dense – consider for example U = Pn

Z−P ∼=
BlPPn

Z − E, where P = (1 : 0 · · · : 0), the scheme BlPPn
Z is the blow up in P ,

E is the exceptional divisor, and n ≥ 2. Integral points in this case are rational
points with a modified coprimality condition:

U(Z) = {(x0 : · · · : xn) ∈ Pn | x0, . . . , xn ∈ Z, gcd(x1, . . . , xn) = 1}.

To see that integral points are analytically dense, let us consider a box of the
form

B = {(t1, . . . , tn) ∈ Rn | ai ≤ ti ≤ bi} ⊂ An(R) ⊂ Pn(R)

for positive real numbers ai, bi. Our aim is to show that it contains infinitely
many integral points – since the situation is symmetric in the signs of the ti,
this will imply that every neighbourhood of every real point contains infinitely
many integral points. The set of integral points in this box is

{(x0, x1, . . . , xn) ∈ Zn
>0 | ai ≤

xi

x0
≤ bi, gcd x1, . . . , xn = 1}.
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We can estimate the number N(B) of such points with bounded x0 ≤ B. A
Möbius inversion yields

N(B) =
∑

x0≤B

∑
α>0

#{(x1, . . . , xn) ∈ Zn
>0 | x0ai ≤ xi ≤ x0bi, α | x1, . . . , xn}

=
∑

x0≤B

∑
α≤bx0

µ(α)#{(x1, . . . , xn) ∈ Zn
>0 |

x0ai

α
≤ xi ≤

x0bi

α
}

with b = mini{bi}, since the set is empty as soon as α > bx0. The number of
integers xi in each of those intervals is

x0(bi − ai)
α

+ O(1)

Multiplying these, we get an error term

Oa,b,n

((x0

α

)n−1
)

,

since x0bi/α ≥ 1, and thus all lower order terms are smaller. In total this gives

N(B) =
∑

x0≤B

 ∑
α≤bx0

ca,b
µ(α)
αn

xn
0 + Oa,b,n(xn−1

0 (1 + log x0))


= c′

a,bBn+1 + Oa,b,n(Bn log B),

which tends to ∞. (The logarithmic factor in the error term is only necessary
if n = 2.)

Still, if we consider a log-anticanonical height function on (BlPPn, E), 100%
of points of height ≤ B are inside a neighbourhood of the boundary as B →∞.
To verify this, let us first determine an asymptotic formula for the number of in-
tegral points of bounded log-anticanonical height. A computation on the homo-
geneous coordinate ring of the toric variety BlPPn shows that a possible choice
for a log-anticanonical height of an integral point is max1≤i≤n{

∣∣xn+1
i

∣∣ , |x0xn
i |}.

A Möbius inversion as above then yields

N(B) =
∑
α>0

µ(α)
∑

0≤x0≤B/αn

#{(x1, . . . , xn) ∈ Zn − {0} | |xi|≤ B
1

n+1
α , 1

α

(
B
x0

) 1
n

for all i
}.

The first of the two conditions on every xi is stronger if and only if x0 ≤
B1/(n+1). In this region, there are at most

2B
1

n+1

α
+ 1

possible values for each xi, so we get a contribution of at most

�
∑
α>0

∑
0<x0≤B1/(n+1)

B
n

n+1

αn
� B

to the number of integral points, which will turn out to be an acceptable error.
In the other region, for every B1/(n+1) ≤ x0 ≤ B there are

2
α

(
B

x0

) 1
n

+ O(1)
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integers xi in every interval. In total, we get

2nB

αnx0
+ On

(
B

n−1
n

αn−1x
n−1

n
0

)
,

since x0 ≤ B/αn implies that the terms of lower order are smaller. Summing
the error term over x0 and α, we see that the total arror is

�n

∑
α>0,

|x0|≤B/α2

B
n−1

n

αn−1x
n−1

n
0

�n

∑
α>0

B

αn−1+2/n
�n B,

and we arrive at

N(B) =
∑
α>0

µ(α)
∑

B1/(n+1)<x0≤B/α2

2nB

αnx0
+ On(B)

=
∑
α>0

µ(α)2nB

αn

(
log B − 2 log α− 1

n + 1
log B + O(1)

)
+ On(B)

=
∑
α>0

µ(α) n2n

(n + 1)αn
B log B + On(B)

= n

n + 1
2n

ζ(n)
B log B + On(B),

which can be checked to agree with [CLT10b].
Let us now determine the number of points outside a box-shaped neighbour-

hood V0 of (1 : 0 : · · · : 0). Every such point satisfies |xi/x0| > ϵ for some i, so,
using the height conditions, it needs to satisfy

x0 <
|xi|
ϵ
≤ B

1
n+1

ϵ
.

Similarly to above, we can get an upper bound for the number N(ϵ; B) of integral
points satisfying this inequality:

N(ϵ; B)�
∑

x0<B1/(n+1)/ϵ

#{(x1, . . . , xn) ∈ Zn − {0} | |xi| ≤ B1/(n+1)} � B

ϵ
,

which is asymptotically smaller than the total number cB log B of rational
points. Hence the proportion of integral points lying inside V0 tends to 1 for
any neighbourhood V0 of (1 : 0 : · · · : 0):

#{x ∈ U(Z) ∩ V0 | H(x) ≤ B}
#{x ∈ U(Z) | H(x) ≤ B}

→ 1, B →∞,

which agrees with the probability following from the equidistribution theorem
in [CLT10b].



Chapter 2

Geometric framework

The aim of this chapter is to provide the necessary background for the geomet-
ric interpretation of asymptotic formulas for the number of integral points of
bounded height on pairs (X, D). To this end, in Sections 2.2–2.3.2, we recall
the frameworks by Peyre [Pey95, Pey03] in the context of rational points and
by Chambert-Loir and Tschinkel [CLT10a] in the context of integral points. In
the remainder of Section 2.3, we slightly generalize the construction of a divi-
sor group and a cone by Chambert-Loir and Tschinkel [CLT10b] to non-toric
varieties and study some of its properties. We will need these objects to geomet-
rically interpret asymptotic formulas in the following chapters. In Section 2.4,
we describe an obstruction to the Zariski density of integral points on parts of
varieties that explains the phenomena on the toric variety in Chapter 5; more-
over, we analyze its connections with constructions in the previous section and
its relation to an obstruction described by Jahnel and Schindler [JS17].

2.1 Setting
Throughout this chapter, let K be a number field, oK its ring of integers, K an
algebraic closure, Kv the completion at a place v, and kv the residue field at a
finite place v. We equip the completions with the absolute values |·|v normalized
such that

|x|v =
∣∣NKv/Qw

(x)
∣∣
w

at a place v lying above a place w of Q, such that |p|p = 1/p on Qp, and with
the usual absolute value on R. Moreover, we equip each of the local fields with
a Haar measure µv satisfying µv(oKv ) = 1 at finite places, the usual Lebesgue
measure dµv = dx at real places, and dµv = i dz dz = 2 dx dy at complex places.

We consider pairs (X, D) with assumptions on X that are similar to the ones
in [Pey03] (replacing the anticanonical by the log-anticanonical divisor): Let X
be a smooth, projective, geometrically integral K-variety, and D be a reduced,
effective divisor with strict normal crossings. Let U = X −D, and let U be an
integral model, by which we mean a flat and separated oK-scheme of finite type
together with an isomorphism between its generic fiber U ×oK

K and U . We
assume that

1. H1(X,OX) = H2(X,OX) = 0,

23
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2. the geometric Picard group Pic(XK) is torsion free,

3. there is a finite number of effective divisors D1, . . . , Dn that generate the
pseudo-effective cone EffX = {

∑
aiDi | ai ∈ R≥0} ⊂ Pic(X)R, and

4. the log-anticanonical bundle ωX(D)∨ is big, that is, it is in the interior of
the (pseudo-)effective cone.

In particular, the anticanonical bundle ω∨
X is also big, and X is almost Fano in

the sense of [Pey03].
For simplicity, we will assume some form of splitness of the pair (X, D):

We assume that the canonical homomorphism Pic(X)→ Pic(XK) is an isomor-
phism and that all irreducible components of DK are defined over K. This is
weaker than the pair (X, D) being split in the sense of [Har17].

To fix further notation, for any open subvariety V ⊂ X we let E(V ) =
OX(V )×/K× be the finitely generated abelian group of invertible regular func-
tions on V up to constants.

2.2 Metrics, heights, and Tamagawa measures
To fix notation, we begin this chapter by recalling several definitions needed for
the geometric interpretation of asymptotic formulas.

2.2.1 Adelic metrics
We start with the definition of adelic metrics and methods to construct them,
as found for example in [Pey03]. An adelic metric on a line bundle L on X is
a collection of norms ‖·‖v : L(xv)→ R≥0 on the lines L(xv) for any completion
Kv of K and any Kv-point xv ∈ X(Kv), satisfying the following conditions:

1. For every local section s ∈ Γ(U,L), the map

U(Kv)→ R≥0 : xv 7→ ‖s(xv)‖v

is continuous with respect to the analytic topology.

2. For almost all finite places v, the norm is defined by an integral model X
of X and L̃ of L over X in the following way: Since X is proper, any point
xv ∈ X(Kv) lifts uniquely to a point x̃v ∈ X (ov). Then x̃∗

vL̃ = L̃(x̃v)
is a free ov-module of rank 1 in x∗

vL = L(xv), and we take the unique
norm ‖·‖v on L(x) that assigns to any generator of L̃(x̃v) the norm 1.
Since any two models are isomorphic over almost all finite places v, this
is independent of the choice of a model.

There are several methods to construct adelic metrics:

• Pull-backs. Let f : X → X ′ be a morphism between smooth, projective K-
varieties, and let L be a line bundle on X ′, equipped with an adelic metric.
Then we get an adelic metric on f∗L in the following way: Locally, any
section of f∗L has the form s′ = h · f∗s for local sections s of L and h of
X. We set ‖s′(xv)‖v = |h(x)|v ‖s(f(x))‖v.
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• Tensor products and inverses. If L and L′ are metrized line bundles,
there is an induced metric on L ⊗ L′ defined by ‖s⊗ s′‖v = ‖s‖v ‖s′‖v

and an induced metric on L∨ defined by ‖h(x)‖v = |(h(s))(x)|v ‖s(x)‖−1
v ,

independent of the choice of a local section s of L that does not vanish in
x.

• Basepoint free bundles. There is a canonical adelic metric on OPn
K

(1):
A local section s ∈ Γ(V,OPn

K
(1)) on an open subvariety V ⊂ Pn

K is a
homogeneous rational function in x0, . . . , xn of degree 1 that does not
have a pole on V . Thus, for any point

x = (x0 : · · · : xn) ∈ V (Kv),

the norm |s(x)|v ·maxi{|xi|v}−1 is well-defined. This metric is defined by
the integral model Pn

oK
at all finite places. Using this, we can associate

a metric with any base point free line bundle L together with a set of
global sections s0, . . . , sn that do not vanish simultaneously: We have a
morphism

f : X → Pn, x 7→ (s0(x) : · · · : sn(x))
with L ∼= f∗OPn(1). Then the pull-back construction gives a metric in-
duced by

‖f∗s(x)‖v = |s(f(x))|
max{|s0(x)|v , . . . , |sn(x)|v}

(2.1)

for rational functions s as above.

Since every line bundle on a projective variety is a quotient of very ample bun-
dles, this allows the construction of metrics on any bundle.

Example 2.2.1. Returning to X = P1 × P1, D = ∆P1 , we can describe the
metric on OX(1, 1) induced by the Segre embedding P1 × P1 → P3. A local
section of OX(1, 1) is a homogeneous rational function f of bidegree (1, 1). Its
norm at a point (x, y) = ((x0 : x1), (y0 : y1) is then

∥∥f(x, y)
∥∥

v
=

∣∣f(x, y)
∣∣
v

max{|x0|v , |x1|v}max{|y0|v , |y1|v}
.

2.2.2 Heights
A line bundle L on a smooth, projective variety X over a number field K
together with an adelic metric determines a height function

H : X(K)→ R≥0, x 7→
∏

v

‖s(x)‖−1
v ,

where s is a section that does not vanish in x. Since ‖s(x)‖v = 1 for almost
all v, the height is well-defined, and since

∏
v |α|v = 1 for all α ∈ K×, it does

not depend on the choice of s. Moreover, different metrics ‖·‖, ‖·‖′ on the same
line bundle define equivalent height functions H and H ′, that is, the quotient
H(x)/H ′(x) is bounded from both above and below.

The number of rational points of bounded height #{x ∈ X(K) | H(x) ≤ B}
is finite if the line bundle L is ample. This still holds outside a closed subvariety
if L is big.
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Example 2.2.2. In order to construct a height associated with an arbitrary
(not necessarily base point free) line bundle, write it as a quotient L = A⊗B−1

of very ample bundles. Take bases a0, . . . , ar and b0, . . . , br of the global sections
of A and B (or simply sets of sections without a common base point). Then

H =
∏

v

max{|ai|v | i = 1, . . . , r}
max{|bj |v | j = 1, . . . , s}

is a height function associated with L, since
∏

v |s(x)|v = 1 for any section s
not vanishing in the respective image of x.

If L is not base point free, it does not suffice to take global sections of L and
consider the maximum of their absolute values. There is, however, an inequality:
If L has global sections, take a basis s0, . . . , sn of them. Then we can complete
{sibj}i,j to a basis of the global sections of A, and get

H(x) ≥
∏

v

max
i=0,...,n

{|si|v}.

If x is not contained in the base locus, the right hand side is H(f(x)) for the
rational map f : X 99K Pn associated with L. From this, we can recover the
above fact: Assume that L is big. By replacing it with a suitable power and
taking the n-th root of an associated height function, we can assume that f
is birational. Let U a Zariski open subvariety on which f is an isomorphism.
Since there are only finitely many points of bounded height on Pn, there are
only finitely many points of bounded height on U .

Example 2.2.3. On P1×P1, the metric we just defined induces a height func-
tion, which coincides with the height function we used for counting, since both
the metric and our height were induced by the Segre embedding. To explicitly
verify this, take a point P = ((x0 : x1), (y0 : y1)) with coprime coordinates.
Then, since x0 and x1 are coprime, at least one has p-adic absolute value 1, so
we get max{|x0|p , |x1|p} = 1 for all finite primes p, and the same for y. Thus,
we get H(P ) = max{|x0| , |x1|}max{|y0| , |y1|} for the height function induced
by the metric.

2.2.3 Tamagawa measures
An adelic metric on the canonical bundle ωX of a smooth, projective variety
X over a number field K induces a Borel measure on the Kv-points X(Kv) for
all places v, called a Tamagawa measure. In local coordinates x1, . . . , xn, it is
given by

dτX,v = ‖dx1 ∧ · · · ∧ dxn‖−1
v dµv.

For finite places v <∞, we consider the modified measure

dτ(X,D),v = ‖1D ⊗ dx1 ∧ · · · ∧ dxn‖−1
v dµv,

induced by a metric on the log-canonical bundle ωX(D), and its restriction τU,v

to U . Here, 1D denotes the canonical section of OX(D), corresponding to 1
under the canonical embedding OX(D)→ KX . Since U(ov) is a compact subset
of U(Kv), the norm ‖1D‖−1

v is bounded on U(ov), and its volume is finite.
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Over finite places v, we further multiply these measures with convergence
factors associated with Pic(UK) and E(UK) as Galois modules. In our situation,
the Galois action on both modules is trivial, and we get the powers(

1− 1
#kv

)rk Pic(U)−rk E(U)

of the local factors at s = 1 of the Dedekind zeta function ζK of K. These make
the product ∏

v<∞

(
1− 1

#kv

)rk Pic(U)−rk E(U)

τU,v(U(oKv ))

absolutely convergent [CLT10a, Theorem 2.5]. Finally, this product is mul-
tiplied with the principal value of the corresponding L-function, in this case
ρ

rk Pic U−rk E(U)
K , where

ρK = 2r(2π)s RegK hk

#µK

√
|dK |

is the principal value of the Dedekind zeta function, with the numbers r and s
of real and complex places, the regulator RegK , the class number hK , the group
µK of roots of unity, and the discriminant dK of K.

Example 2.2.4. Again returning to P1 × P1, we first notice that we only have
a metric on a line bundle isomorphic to the log-anticanonical bundle, note on
the log-anticanonical bundle itself (which in turn would induce a metric on the
canonical bundle). To get a metric that induces Tamagawa measures, we need an
isomorphism between ωX and OX(−2,−2). Up to constants, there are unique
non-vanishing sections of these two line bundles on X − V (x0y0) ∼= A2: the
section d(x1/x0)∧d(y1/y0) of ωX and the section 1/x2

0y2
0 of OX(−2,−2). Hence,

there is an isomorphism between the two bundles mapping one to the other.
Similarly, there is an isomorphism OX(1, 1) ∼= OX(∆P1) identifying x0y1−x1y0
and the canonical section 1∆P1 . With these isomorphisms, we get a metric on
ωX(∆) satisfying∥∥∥dx ∧ dy ⊗ 1∆1

P

∥∥∥
v

=
∣∣∣∣x0y1 − x1y0

x2
0y2

0

∣∣∣∣
v

max{|x0|v , |x1|v}max{|y0|v , |y1|v}

= |x− y|v max{1, |x|v}max{1, |y|v}

at every place v. With this description, we can compute the Tamagawa numbers
at finite places p. Recall that the set of integral points had a description by four
disjoint regions. On the first one, we have |x| < 1, |y| ≥ 1, so ‖dx ∧ dy ⊗ 1D‖p =∣∣y2
∣∣ (using the ultrametric triangle inequality), and so its volume is∫

x∈Qp

|x|<1

∫
y∈Qp

|y|>1

1
|y|2

dx dy = µp({x ∈ Qp | |x| < 1})
∑
δ≥0

(
1− 1

p

)
pδ 1

p2δ
= 1

p
,

and the second volume is the same. By similar calculations, the volumes of the
third and fourth region are

2
p
− 2

p2 and 1− 3
p

+ 2
p2 .
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In total, this gives us a volume of

τU,p(U(Zp)) = 1 + 1
p

,

which, after multiplying it with the convergence factor (1 − 1
p ), coincides with

the factor at p of the Euler product in our asymptotic formula.
While these measures depend on the choice of isomorphism OX(1, 1) ∼=

ωX(D), the formula in the end will not: Automorphisms of a line bundle on
a projective variety are the morphisms arising by multiplication with a constant
λ, so choosing a different isomorphism would multiply all measures by |λ|v.
Since, in the end, we will multiply all volumes, the result does not depend on λ
by the product formula.

2.3 Clemens complexes and associated data
Integral points tend to accumulate near the boundary, with more points ly-
ing near intersections of several components of the boundary divisor. For this
reason, combinatorial data on the boundary, encoded in Clemens complexes,
appears in asymptotic formulas for the number of integral points of bounded
height.

2.3.1 Clemens complexes
The geometric Clemens complex CK(D) is a partially ordered set defined as
follows: Let A be an index set for the set of irreducible components of D (which
are the same as the irreducible components of DK by our assumptions); denote
by Dα the irreducible component of D corresponding to α ∈ A, and, for any
A ⊂ A, by DA the intersection

⋂
α∈A Dα. Then the geometric Clemens complex

consists of all pairs (A, Z), such that A is a non-empty subset of A, and Z is an
irreducible component of (DA)K . Its ordering is given by (A, Z) ≺ (A′, Z ′) if
A ⊂ A′ and Z ⊃ Z ′. In other words, we add a vertex for every component of D;
if the intersection of a set of components is non-empty, we glue one simplex to the
corresponding set of vertices for every geometric component of the intersection.
In the following, we will often suppress Z from the notation.

For an archimedean place v, we will also be interested in the Kv-analytic
Clemens complex Can

v (D). It is the subset consisting of all pairs (A, Z) such
that Z is defined over Kv and has a Kv-rational point. (Note that this depends
on v and not just on the isomorphism class of Kv.) By the assumptions in the
beginning of this chapter, we have the following:

Lemma 2.3.1. If a face (A, Z) of the geometric Clemens complex is part of the
Kv-analytic Clemens complex Can

v (D), then so are all of its subfaces (A′, Z ′).

Proof. Such a subface is given by data A′ = {D1, . . . , Dr} ⊂ A and an irre-
ducible component Z ′ ⊂ DA′ with Z ′ ⊃ Z. Since Z(Kv) 6= ∅, it contains a
Kv-point P , that is, a point P invariant under the action of the Galois group
of Kv; since Z ′ ⊃ Z, the point P is also on Z ′. For contradiction, assume now
that Z ′ is not defined over Kv. Since the Di are all defined over K, they are
invariant under the Galois action, and thus the conjugates σZ ′ of Z ′ under the
action of the Galois group are also contained in all DAi

, hence also in DA′ . Since
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P is contained in the intersection of all conjugates (and there is more than one
by the assumption), DA′ is singular in P , and D does not have strict normal
crossings, contradicting our assumptions at the beginning of this chapter.

Note that, since DA is smooth for every face A, the set DA(Kv) is a smooth
Kv-manifold. We will often be interested in maximal faces of the analytic
Clemens complex with respect to the ordering. (Such faces need not be maximal-
dimensional, that is, maximal with respect to their number of vertices.) Ge-
ometrically, maximal faces are faces A such that DA(Kv) intersects no other
divisor component. We denote the set of maximal faces by Can,max

v (D); if the
Kv-analytic Clemens complex is empty at a place v, then the empty set is its
unique maximal face.

2.3.2 The measure associated with a maximal face
Let v be an archimedean place, and let A ∈ Can,max

v (D) be a maximal face of
the Kv-analytic Clemens complex, that is, a maximal subset of the irreducible
components whose intersection DA has a Kv-rational point. Denote by

∆A = D −
∑
α∈A

Dα

its “complement”. We are interested in a measure τDA
on DA(Kv) defined as

follows [CLT10a, 2.1.12]: A metric on ωX(
∑

α∈A Dα) defines a metric on ωDA

and thus a Tamagawa measure τ on DA(Kv) by repeated use of the adjunction
isomorphism (since D is assumed to have strict normal crossings). We consider
the modified measure

‖1∆A
‖−1

O(∆A),v τ.

This measure only depends on the metrization of the log-canonical bundle
ωX(D): This metric induces a metrization of ωDA

(∆A), via the adjunction
isomorphism, and the above measure is equal to∥∥∥1∆′

A
⊗ dx1 ∧ · · · ∧ dxs

∥∥∥−1

ωDA
(∆A),v

d(x1, . . . , xs),

with local coordinates x1, . . . , xs. Note that the maximality of A guarantees that
‖1∆A

‖−1
v does not have a pole on DA(Kv), and is thus bounded on DA(Kv) since

this set is compact.
These measures are further renormalized by a factor c#A

Kv
, where cR = 1,

and cC = 2π is the volume of the unit ball in the archimedean local field with
respect to the Haar measure we are using. We thus get a residue measure

τDA
= c#A

Kv
‖1∆A

‖−1
O(∆A),v τ

on every DA. See [CLT10a, 3.1.1, 4.1] for more details.
Example 2.3.2. Once more returning to P1×P1, we first note that the Clemens
complex is just the single vertex ∆ = ∆P1 , and thus has a single maximal face.
Following (loc. cit.), we compute the residue measure at this maximal face. We
have a local coordinate z = x + y of ∆, and a local equation z′ = x − y of ∆,
satisfying dz′ ∧ dz = 2 dx ∧ dy. In these new coordinates, we have

‖dx ∧ dy ⊗ 1∆‖ωX (∆),∞ = |z|max
{

1,

∣∣∣∣z + z′

2

∣∣∣∣}max
{

1,

∣∣∣∣z − z′

2

∣∣∣∣} .
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Thus, we get

‖dz‖ω∆,∞ = lim
z′→0

1
|z|
‖dz′ ∧ dz ⊗ 1D‖ωX (∆),∞ = 2 max

{
1,
∣∣∣z2 ∣∣∣}2

.

Integrating its inverse yields∫
|z|≤2

1
2

dz +
∫

|z|>2

2
|z|2

dz = 4,

and after renormalizing with cR = 2, we get τ∆,∞(∆(R)) = 8.

2.3.3 A divisor group
Let A = (Av)v|∞ ∈

∏
v Can,max

v (D) be a tuple of maximal faces Av of the Kv-
analytic Clemens complexes for all archimedean places of K. We set

∆A =
∑

α6∈Av

for all v|∞

Dα and UA = X −∆A,

so ∆A ⊂ D is again the “complement” of A. With ∆Av
as before for the maximal

face Av at a place v and UAv
= X −∆Av

, we have inclusions

∆A ⊂ ∆Av
⊂ D and U ⊂ UAv

⊂ UA ⊂ X.

We associate some data with A analogous to groups defined by Chambert-Loir
and Tschinkel for toric varieties [CLT10b, 3.5], using the full set of divisors
instead of invariant ones: We let

Div(U ; A) = Div(U)⊕
⊕
v|∞

ZAv and Pic(U ; A) = Div(U ; A)/ im(divA),

where divA : KX → Div(U ; A) maps a rational function f todivU (f),

(∑
α∈Av

ordDα
(f)Dα

)
v

 .

Since divA is compatible with the standard divisor function, we have canonical
homomorphisms πA : Pic(X) → Pic(U ; A) and σA : Pic(U ; A) → Pic(U). The
first one maps the class of a prime divisor [E] to the class of (E∩U, (1E∈Av

E)v),
where 1E∈Av

is 1 if E is a component of D and belongs to the maximal face Av,
and 0 otherwise. The second homomorphism σA maps the class of (E, (Ev)v) ∈
Div(U ; A) to [E].

If K has only one archimedean place, these constructions simplify to the
Picard group Pic(U ; A) = Pic(UA) of UA and the pullback homomorphisms
Pic(X)→ Pic(UA) and Pic(UA)→ Pic(U).

In the context of asymptotic formulas, we will be interested in the two num-
bers

bA = rk Pic(U)− rk E(U) +
∑
v|∞

#Av and

b′
A = rk Pic(U ; A)

connected to the exponent of log B and a factor of the leading constant associ-
ated with Pic(U ; A).
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Lemma 2.3.3. We have

bA = rk Pic X −#A+
∑
v|∞

#Av and

b′
A = bA + rk E(UA).

Proof. For the first assertion, note that there is an exact sequence

0→ E(U)→ CH0(D)→ Pic(X)→ Pic(U)→ 0. (2.2)

Indeed, the part on the right is the localization sequence for Chow groups.
Exactness on the left follows form the fact that a relation making a divisor
supported on supp(D) linearly trivial has to come from a meromorphic section
whose only zeroes and poles are on supp(D), that is, invertible regular func-
tions on U . The only such functions mapping to 0 in CH0(D) are regular and
invertible on X, hence invertible constants, and we get E(U) on the left. The
assertion then follows with rk CH0(D) = #A.

The second assertion will follow from the exactness of a sequence

0→ E(UA)→ E(U)→
⊕
v|∞

ZAv → Pic(U ; A)→ Pic(U)→ 0. (2.3)

The homomorphism to Pic(U) is the map σA defined above; its kernel is gen-
erated by divisors supported outside U , that is, on A. If such a divisor E is
linearly equivalent to 0 in Pic(U ; A), this equivalence is induced by a section
which has corresponding zeroes and poles on E, but no zeroes and poles on U ;
again, we can exclude constants. Finally, the invertible regular functions on U
not inducing such a relation, and thus mapping to 0 in the middle group are
those which do not have a zero or pole on any A, i.e., those that are regular and
invertible on UA.

Remark 2.3.4. We always have bA = b′
A for e.g. toric varieties [CLT10b, 3.7.1

with the remark before Lemma 3.8.5], partial equivariant compactifications of
vector groups, and semisimple groups (since their effective cones are simplicial
and generated by invariant divisors). Both numbers play a role in asymptotic
formulas, and we will see in Lemma 2.4.4 that they are equal whenever we can
expect a tuple A of maximal faces to contribute to an asymptotic formula.

Remark 2.3.5. Due to our assumptions on X and D, it does not matter
whether we work over K or K: For a group Pic(UK ; A) similarly defined over
K we would have a canonical isomorphism Pic(UK ; A) ∼= Pic(U ; A). Indeed,
we can consider the two exact sequences in the proof of Lemma 2.3.3 over
both K and K together with the obvious homomorphisms between them. The
splitness assumptions imply that the homomorphisms Pic(X) → Pic(XK) and
CH0(D) → CH0(DK) are isomorphisms, so using the five lemma three times
yields Pic(UK ; A) ∼= Pic(U ; A).

2.3.4 A convex cone
Assume that Pic(U ; A) is torsion-free – in Lemma 2.4.6 we will see that this
holds whenever there is no obstruction to the Zariski density of integral points
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“near A”. It is thus a lattice in VA = Pic(U ; A)R, and we consider this vector
space together with its effective cone ΛA ⊂ Pic(U ; A)R generated by the images
of effective divisors Div≥0(U) ⊕

⊕
ZAv

≥0. If K has only one archimedean place,
this is simply the effective cone EffUA

of UA.
We can equip the dual vector space V ∨

A = Pic(U ; A)∨
R with the Haar measure

λ normalized by the dual lattice Pic(U ; A)∨. The characteristic function of ΛA

is defined via
XΛA

(L) =
∫

Λ∨
A

e−〈L,t〉 dt.

It is finite in the interior of ΛA. Since the log-anticanonical bundle ωX(D)∨ is
big, its image is in the interior of ΛA, and we set

αA = 1
(b′

A − 1)!
XΛA

(π(ωX(D)∨)),

where π : Pic(X) → Pic(U ; A) is the canonical map. This value is non-zero if
and only if ΛA is strictly convex. In Lemma 2.4.3, we will see that if this is not
the case, then there is an obstruction to the Zariski density of integral points
“near A”, and the face A should not contribute to an asymptotic formula.

The constant αA can alternatively be described as a volume: Equip the
hyperplanes Ha = {t ∈ V ∨ | 〈L, t〉 = a} with measures λA normalized such that∫

V ∨
A

f dλ =
∫
R

(∫
Ha

f dλHa

)
da

for all functions f on V ∨
A with compact support. Then (cf. [Vin63, Chapter 1,

§ 2])

αA = vol{t ∈ Λ∨
A | 〈ωX(D)∨, t〉 = 1}

= b′
A vol{t ∈ Λ∨

A | 〈ωX(D)∨, t〉 ≤ 1}.

If the cone ΛA is smooth, that is, generated by a Z-basis r1, . . . , rb′
A

of Pic(U ; A),
this further simplifies: If π(ω(D)∨) has the representation (a1, . . . , ab′

A
) in this

basis, we have
αA = 1

(b′
A − 1)!

∏
1≤i≤b′

A

1
ai

.

Example 2.3.6. To finish the geometric interpretation for P1 × P1 −∆, let us
compute α∆. First of all, we note that b∆ = 2−1+1 = 2 by Lemma 2.3.3. Since
there is only one maximal face, we have U∆ = X for this face, so Pic(U ; ∆) =
Pic(X) = Z2, and its effective cone ΛA = EffX = R≥0 × R≥0 is smooth. Then
we have b′

A = 2 = bA, the log-anticanonical class is (1, 1), and we get αA = 1.
In total, we now have a geometric interpretation of our asymptotic formula for
the number of integral points of bounded height on P1 × P1 − ∆P1 , similar to
other results on integral points:

N(B) = α∆τD∆,∞(D∆(R))
∏

p

((
1− 1

p

)rk(Pic U)

τU,p(U(Zp))

)
B(log B)b∆−1

+ O(B).
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(Note that on a field with only one archimedean place we always have E(U) = 0
if the set of integral points is Zariski dense by the second argument in the proof
of Lemma 2.4.4.) More examples will follow in the next section.

2.4 An obstruction
Let A ∈

∏
v Can,max

v (D) be a tuple of maximal faces of the Clemens complex, and
consider the regular sections OX(UA) on UA. These provide an obstruction to
the Zariski density of integral points near A: IfOX(UA) 6= K, that is, if there are
non-constant sections on UA, there are no integral points that are simultaneously
near all DAv

, except possibly on a finite set of strict subvarieties. Since we should
exclude such subvarieties if they were to contribute to an asymptotic formula,
there cannot be a contribution of “points near A” to an asymptotic formula in
this case. In this case, we will say that there is an obstruction to the Zariski
density of integral points near A.

Proposition 2.4.1. Let A ∈
∏

v Can,max
v (D) be a tuple of maximal faces of the

analytic Clemens complexes such that OX(UA) 6= K. Then there is a dense
Zariski open subset V ⊂ X and an analytic neighbourhood Uv of DAv

in X(Kv)
for every archimedean place v such that

{x ∈ U(oK) ∩ V (K) | x ∈ Uv for all v | ∞} = ∅.

Proof. Let s be a non-constant section in H0(UA,OX). After multiplying with
a suitable constant, we can assume it is a section of the integral model. Let v
be an infinite place. Then, by the maximality assumption, DAv

(Kv) does not
intersect ∆A(Kv), so |s|v is continuous on the compact set DAv

(Kv) and attains
its maximum Mv. Let

Uv = {x ∈ X(KK) | |s(x)|v < 2Mv}.

Since s(x) ∈ oK for integral points x ∈ U(oK), it can attain only finitely many
values α in the box defined by the Mv. Every integral point lying in all of the
Uv must thus lie on one of the finitely many subvarieties V (s− α).

If there is such an obstruction for a maximal face A, points near DA′ for
subfaces A′ are similarly obstructed – except possibly near a larger face B ⊃ A′,
in which case we would expect that their number is described by invariants
attached to B, or, more precisely, maximal faces containing B.

Lemma 2.4.2. Let A ∈
∏

v Can,max
v (D) be a tuple of maximal faces of the

Clemens complex such that OX(UA) 6= K. Let A′ ⊂ A be a subface. For every
place v, let B1,v, . . . , Brv,v be the faces containing A′

v as a strict subface. For
every i and v, let Ui,v be an arbitrary analytic open neighbourhood of DBi,v

(Kv)
in X(Kv). Then there exists an analytic neighbourhood Uv of

DA′
v
−

n⋃
i=1

Ui,v

in X(Kv) for every v | ∞ and a dense Zariski open subvariety V ⊂ X such that

{U(oK) ∩ V (K) | x ∈ Uv, but x 6∈ Ui,v for all v | ∞ and i = 1, . . . , n} = ∅.
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Proof. The proof works analogous to the last one (and the above proposition
can be regarded as a special case, taking A′ = A): Let s ∈ OX(UA) be non-
constant. The poles of |s|v on DA′

v
(Kv) are entirely contained in its intersection

with ∆A(Kv), so, again, |s|v is continuous on the compact set DA′
v
−
⋂n

i=1 Ui,v,
and attains its maximum Mv. As before, we get open subsets

Uv = {xv ∈ X(Kv) | |s(x)|v ≤ 2Mv}

and a finite set of subvarieties of the form V (s− α).

This obstruction can be triggered if some of the objects defined in the pre-
vious section behave pathologically: If the cone ΛA fails to be strictly convex,
if Pic(U ; A) has torsion elements, or if its rank b′

A is not equal to the exponent
bA = rk Pic U − rk E(U) +

∑
v #Av, then there is an obstruction to the Zariski

density of integral points near A.
For the first case, if the cone ΛA whose characteristic function appears in

asymptotic formulas is not strictly convex, it yields a factor αA = 0. An example
of this happening, which also has an impact on the exponent of log B in an
asymptotic formula, is analyzed in Chapter 5.

Lemma 2.4.3. Let A ∈
∏

v Can,max
v (D) be a tuple of maximal faces such that

ΛA is not strictly convex. Then OX(UA) 6= K.

Proof. That ΛA is not strictly convex means that it contains a line through 0,
that is, we can find two effective divisors (E, (Ev)v) and (E′, (E′

v)v) ∈ Div(U ; A)
with E + E′ ∼ 0. Hence there exists a rational function which vanishes on
all E, Ev, E′, E′

v (and thus is non-constant), and whose only poles are outside
UA.

We have defined two constants bA and b′
A arising in asymptotic formulas,

which coincide for toric varieties and all varieties studied in the next chapters.
While this does not hold in general, there is an obstruction whenever they differ.

Lemma 2.4.4. Let A ∈
∏

v Can,max
v (D) be a tuple of maximal faces such that

bA 6= b′
A. Then OX(UA) 6= K. If, in addition, K has only one infinite place,

then U(oK) is not Zariski dense for any integral model U of U .

Proof. We have seen in Lemma 2.3.3 that this happens if and only if there is
a non-trivial invertible regular function s ∈ E(UA), so, in particular, there is a
non-trivial regular function on UA.

Next, assume that K has only one infinite place, that is, that the group of
units o×

K is finite, and let s ∈ E(UA) be such an invertible regular function. After
multiplying s and s−1 with appropriate constants, we get regular sections s and
s′ on U such that ss′ = a ∈ oK . For a rational point x ∈ U(oK), the value s(x)
then has to be a divisor of a, of which there are only finitely many. The integral
point x must thus lie on one of the finitely many subvarieties V (s− α)α|a of
X.

Example 2.4.5. Consider Pn and the three hyperplanes V (x0), V (x1), and
V (x0 + x1). Their sum does not have strict normal crossings, which we can
remedy by blowing up V (x0, x1). Call the resulting variety X, and consider the
pair (X, D) with D = H1 +H2 +H3 +E, where the Hi are the strict transforms
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of the three hyperplanes and E is the exceptional divisor. For n ≥ 3, the
log-anticanonical bundle is big (though never nef), and we have U = X −D ∼=
An−V (x1)−V (x1 +1). The geometric and every Kv-analytic Clemens complex
is then a “star”, with the vertex corresponding to E connected to the other three
vertices Hi. If we take A = (Av)v with the same maximal face A = {E, Hi}
(for some fixed i) for all infinite places, we have UA

∼= An−1 ×Gm. Hence

bA = rk Pic(U)− rk E(U) +
∑
v|∞

#A = 0− 2 + 2(r + s) = 2(r + s)− 2.

On the other hand, using (2.3),

0→ E(UA)→ E(U)→ (ZA)⊕(r+s) → Pic(U ; A)→ 0

is exact, with the groups to the left having ranks 1, 2, and 2(r +s), respectively,
so b′

A = 2(r+s)−1, and there is an obstruction. In fact, the set of integral points
is not dense: Every integral point lies on one of the subvarieties {ax0−bx1 = 0}
parametrized by the finitely many solutions a, b ∈ o×

K of the unit equation
a + b = 1.

Lemma 2.4.6. Let A be a tuple of maximal faces such that Pic(U ; A) is not
torsion free. Then OX(UA) 6= K.

Proof. We consider the morphism πA : Pic(X) → Pic(U ; A). It fits into an
exact sequence

CH0(∆A)→ Pic(X)→ Pic(U ; A)→
⊕

v

ZAv /ZA−supp ∆A → 0. (2.4)

Indeed, its kernel is generated by divisors supported on ∆A, hence the im-
age of the pull-back map CH0(∆A) → Pic(X); for exactness on the right,
note that Pic(X) = (Div(U) ⊕ ZA)/ im(divX), so the cokernel of πA is indeed⊕

v ZAv /ZA−supp ∆A , after omitting the part Zsupp ∆A mapped to 0 by πA.
The rightmost group is torsion free: An element (nDv)v is in the image of ZA

if and only if there is a divisor D such that nDv = i−1(D) for all iv : UAv → UA;
in particular, D is divisible by n on

⋂
Av, and thus the class of (Dv)v is already

0. Hence, every non-zero torsion element T ∈ Pic(U ; A) has to be the image of
a (non-zero) element T̃ ∈ Pic(X) such that nT̃ ∈ im(Zsupp ∆A), i.e., there are
bα such that nT̃ +

∑
bαDα ∼ 0. Consider

T̃ ′ = T +
∑⌈

bα

n

⌉
Dα.

The divisor T̃ ′ is non-zero and in the effective cone, so, using our assumptions
on X, it is represented by an effective Q-divisor E. The image of T̃ ′ = [E] is
still T , so the image of [nE] is trivial. Working with a suitable multiple of nE
that is integral, this means that there is a rational function s vanishing on the
support of E, and which can only have poles on ∆A. Since the image of [E] in
Pic(U ; A) is non-zero, the support of E cannot be contained in the support of
∆A. Hence s is non-constant and regular on UA, and we have OX(UA) 6= K.
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Example 2.4.7. Let us consider Pn together with a divisor D having two com-
ponents: The quadric hypersurface Q = {x2

0 =
∑n

i=1 x2
i }, and the hyperplane

H = {x0 = 0}. If n ≥ 3, the log-anticanonical bundle is ample. The intersection
Q∩H does not contain any R-points, so, for totally real fields, every Kv-analytic
Clemens complex consists of two vertices at every place v. Consider the set A
consisting of the face H at every place. Since the Picard group of U = Pn −D
is trivial, (2.3) allows us to compute

Pic(U ; A) ∼= Zr/(2, . . . , 2) ∼= Zr−1 ⊕ Z/2Z.

Note that if K = Q, there are only finitely many points corresponding to the
solutions of x2

1 + · · ·+ x2
n = 2, while for larger fields, we get the sets of solutions

of x2
1 + · · ·+ x2

n = 1 + u for units u ∈ o×
K .

In [JS17], Jahnel and Schindler describe obstructions at archimedean places.
For an archimedean place v, the complement U of a very ample divisor D is
called weakly obstructed at v if there is a connected component U ′ of U(Kv),
a constant c > 0, an integer d > 0, and a finite set of rational functions of
the form si = fi/1d

D with fi ∈ H0(X,OX(D)⊗d) not multiples of 1d
D (that is,

non-constant regular functions si on U) such that, for every point x ∈ U ′, there
is at least one si with |si|v < c.

Lemma 2.4.8. Let v be an archimedean place of K, and assume that U(Kv)
is connected. Then the following are equivalent:

• U is weakly obstructed at v, and

• OX(UA) 6= K for all maximal faces A of the Kv-analytic Clemens complex.

Proof. Let c be a constant and s1, . . . , sn be regular functions on U such that,
for every x ∈ U(Kv) we have |si(x)|v < c for some i. Since, by assumption,
every point z on the boundary is a limit of points on U , we have |si(x)| ≤ c.
Take a point x on DA(Kv) for a maximal face A. Then there is an si with
|si(x) ≤ c|. Then |si(x)| < 2c is a neighbourhood of x, so, for all α ∈ A, it
intersects all Dα(Kv) in an open subset. In particular, si cannot have a pole on
any of the Dα, and is thus regular on UA.

For the other direction, we take a non-trivial sA ∈ OX(UA) for all maximal
faces A. For every point x on the boundary, at least one of the sA is regular
in x. Moreover, all of them are regular on U , and thus {|si| < c}i,c covers the
compact set X(Kv), and there is a finite subcover. We can then take c as the
maximal constant used in this subcover.

Remark 2.4.9. Over fields with only one infinite place, integral points are not
Zariski dense if U is weakly obstructed at∞ by [JS17, Theorem 2.6]. In a more
general setting, this does not need to be the case, even if U is obstructed at every
archimedean place: If we take A = (Av)v with different faces Av for different
archimedean places, we have UAv

⊊ UA, and the regular sections OX(UA) might
be trivial, even though OX(UAv

) 6= K for all archimedean places v. However,
the following generalizes said result to fields with more than one infinite place,
providing an obstruction to the Zariski density of integral points.

Proposition 2.4.10. Assume that OX(UA) 6= K for all tuples of maximal
faces. Then U(oK) is not Zariski dense for any integral model U of U .
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Proof. For every A, let sA ∈ OX(UA) − K; after multiplying with a suitable
constant, we can assume that sA is regular on U . Let x = (xv)v ∈

∏
v|∞ X(Kv).

For all archimedean places v such that xv ∈ D(Kv), let A′
v be the face of the

Clemens complex that is maximal under those with x ∈ DA′ . Let Av be a
maximal face containing A′

v. For all v such that xv ∈ U(Kv), let Av be an
arbitrary maximal face, and let A = (Av)v. Then xv ∈ UAv

(Kv) ⊂ UA(Kv) for
all v; hence sA is regular in all xv, and

∣∣sA(xv)
∣∣
v

is finite for all v. The open
sets

{
∣∣sA

∣∣
v
≤ c}A,c

cover the compact set
∏

v|∞ X(Kv), and there is a finite subcover; let c be the
maximal constant needed for this finite subcover. Let I be the finite set of
α ∈ K with |α|v ≤ c for all v. Now, for every integral point x ∈ U(Z), there
has to be a maximal face A such that

∣∣sA(x)
∣∣
v
≤ c for all v | ∞; since sA is a

regular section of U , we even have sA(x) ∈ I. This means that every integral
point is on one of the finitely many strict subvarietiesV (sA − α)

∣∣∣∣∣∣ A ∈
∏
v|∞

Can,max
v (D), α ∈ I

 ,

and the set of integral points is not Zariski dense.

This obstruction always vanishes after a suitable base change:

Lemma 2.4.11. There is a finite extension L ⊃ K such that there is a tuple
A = (Aw)w of maximal faces of the analytic Clemens complex Can

Lw
(DL) at every

archimedean place w of L with OX((UL)A) 6= L.

Proof. Let A1, . . . , An be the maximal faces of the geometric Clemens com-
plex CK(D), and let L ⊃ K be an extension with at least n complex places
w1, . . . , wn. Then Can

Lwi
(DL) = CK(D) for these places, and we can take the tu-

ple A = (Aw)w with Awi
= Ai for these n complex places and Aw an arbitrary

maximal face for all other places. Since every Di belongs to at least one maximal
face of the Clemens complex, we have (UL)A = XL, hence OXL

((UL)A) = L.

Remark 2.4.12. This analysis means that, when studying a variety with
Zariski dense integral points, there will always be at least one maximal face
for which the objects of the previous section are well-behaved, and, in partic-
ular, there always exists a collection of maximal faces A with αA 6= 0. The
converse is however far from true: There are varieties with unobstructed tuples
of maximal faces whose integral points still are not Zariski dense. For instance,
integral points in Example 2.4.5 are never Zariski dense, but the above lemma
shows that there is an unobstructed tuple of faces over sufficiently large number
fields.

2.5 Asymptotic formulas
These definitions allow the interpretation of asymptotic formulas. Keep all the
assumptions on (X, D) from the beginning of this chapter, which included X
and D being split. Let U be an integral model of U , and assume that U(Z) is
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Zariski dense. Let H be the height function associated with a metric on the log-
anticanonical bundle ωX(D)∨. We are interested in the asymptotic behaviour
of the number

N(B) = {x ∈ U(oK) ∩ V (K) | H(x) ≤ B}

of integral points of bounded height whose generic point is on a suitable subset
V of X. If strong approximation holds (using the set of connected components
at archimedean places, cf. e.g. [CTWX18]), we might then expect an asymptotic
expansion for N(B) of the form

c∞cfinB(log B)b−1(1 + o(1)), (2.5)

where

c∞ = 1
|dK |dim U/2

∑
A∈Cmax,◦(D)

αA

∏
v|∞

τDAv ,v (DAv
(Kv)) and

cfin = ρ
rk Pic U−rk E(U)
K

∏
v<∞

(
1− 1

#kv

)rk Pic U−rk E(U)

τU,v(U(oKv
)).

Here, the number b in the exponent of log B is the maximal value of bA = b′
A

attained on tuples A of maximal faces with OX(UA) 6= K, i.e., on tuples without
an obstruction. The sum runs over the set

Cmax,◦(D) =

A ∈
∏
v|∞

Can,max
v (D)

∣∣∣∣∣∣ OX(UA) 6= K, bA = b


of tuples A on which this maximum b is attained, that is, the set of “maximal-
dimensional tuples” under those without an obstruction. The results in the
previous section guarantee that the sum does not run over the empty set and
that the factors are non-zero.

In a more general setting, the volume has to be that of a suitable subset
of adelic points instead of a product of volumes, the factor ρK is the principal
value of a different L-function, and additional factors appear in the constant,
related to failures of strong approximation, to non-splitness, and to cohomolog-
ical invariants (similar to the case of rational points). It is unclear to the author
what the shape of such a factor for arbitrary (X, D) should be, and under which
conditions it should be different from 1. Note that the Brauer group, whose or-
der appears in Manin’s conjecture for rational points, might not be trivial even
for split U .

We can compare (2.5) to results in the framework by Chambert-Loir and
Tschinkel. We note a difference in the case of toric varieties, and list the addi-
tional factors appearing in these asymptotic formulas.

• The formula above agrees with the [CLT12, Theorem 3.5.6] on partial
equivariant compactifications of vector groups, since the obstruction never
occurs in these cases, and since the cones ΛA are all smooth, satisfying

αA = 1
(b− 1)!

∏
α 6∈A

1
ρα

∏
v|∞

∏
α∈Av

1
ρα − 1


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with the description −KX =
∑

α∈D ραDα of the anticanonical divisor as
a sum of the boundary components {Dα}α∈D.

• Similarly, in the case of partial equivariant compactifications of split semi-
simple groups [TBT13], the obstruction does not occur, and the cones are
smooth with a similar description of αA, making the formulas compatible.
An additional factor is part of the asymptotic formula (18) in op. cit.: the
number |χS,D,λ(G)| of certain automorphic characters of the underlying
group G, related to strong approximation on G.

• The formula (2.5) is not compatible with [CLT10b, Theorem 3.11.5] on
toric varieties; it modifies the exponent b − 1 of log B and the index set
of the sum. Our formula above agrees with the asymptotic formula we
determine in Chapter 5. The formula in loc. cit. contains additional factors

|A(T, U, K)∗|
|A(T )∗|

∣∣H1(Γ, Pic(XE))
∣∣

|H1(Γ, ME)|
:

two groups of automorphic characters, related to weak and strong approx-
imation on T , and cohomology groups from the action of the Galois group
(which is trivial in the split case). Moreover, the volume is taken on the
subset of the adelic points cut out by these automorphic characters.

• The formula (2.5) with this general version of αA (using all divisors instead
of only torus-invariant ones in op. cit.) is defined for the non-toric varieties
that we study in in Chapters 3 and 4, and agrees with the asymptotic
formulas determined in these two chapters.





Chapter 3

Integral points on a Fano
threefold

3.1 Introduction
The aim of this chapter is to provide an asymptotic formula for the number of
integral points of bounded height on a certain Fano threefold. Fano threefolds
were classified by Iskovskih, Mori and Mukai [Isk77, MM82]. For these, Manin
proved a lower bound for the number of rational points [Man93]. Those Fano
threefolds that are toric or additive and for which Manin’s conjecture is thus
known have been classified by Batyrev [Bat81] and Huang–Montero [HM18],
respectively. Besides such results for general classes of varieties, Manin’s con-
jecture for Fano threefolds remains open.

We prove an asymptotic formula for a Fano threefold that does not belong
to any of the classes for which an asymptotic formula for the number of integral
points is known (cf. Lemma 3.2.4 and Remark 3.2.5). More precisely, we are
interested in a pair (X, D), where X is in particular Fano, has Picard number 2
and is of type 30 in the classification of Fano threefolds [MM82]. Let π : X → P3

be the blow-up of P3 = ProjQ[a, b, c, d] in the smooth conic C = V(a2 + bc, d).
We will provide asymptotic formulas for the number of integral points on X−Di,
where D1 is the preimage π−1(V(b)) of a plane intersecting C twice in one
rational point and D2 is the preimage π−1(V(a)) of a plane intersecting C
in two rational points. Up to Q-automorphism, these are precisely the planes
intersecting C in rational points. To construct integral models Ui of Ui = X−Di,
we consider the blow-up X of P3

Z in V (a2 + bc, d) and define U1 = X − D1,
U2 = X −D2.

We describe their integral points explicitly by a universal torsor in Sec-
tion 3.2. In Section 3.3, we construct a log-anticanonical height function

H : X(Q)→ R>0,

measures τ(X,Di),p on X(Qp) and τDi,∞ on Di(R) renormalized with convergence
factors defined in [CLT10a], and a renormalization factor cR. We continue with
a description of a constant α and the exponent of log B in the expected asymp-
totic. In Sections 3.4 and 3.5, we prove an asymptotic formula for the number of
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integral points of bounded height on U1 and U2. A comparison of these formulas
with the computations in the preceding section yields the following result:

Theorem 3.1.1. For i ∈ {1, 2}, let X, X , Di, Ui, and H be as above. Let
V1 = X−π−1(V (abd)) and V2 = X−π−1(V (abcd)). Then the number of integral
points of bounded height Ni(B) = #{x ∈ Ui(Z) ∩ Vi(Q) | H(x) ≤ B} satisfies
the asymptotic formula

Ni(B) = ci,finci,∞B log B(1 + o(1)),

where

ci,fin =
∏

p

(
1− 1

p

)rk Pic X

τU,p(Ui(Zp)),

ci,∞ = αDi
τDi,∞(Di(R)),

and all constants are associated with the unique maximal face Di of the Clemens
complex. Moreover, the exponent 1 = bDi

−1 = b′
Di
−1 agrees with the definitions

in the previous chapter. More explicitly, we have

N1(B) = 20
3ζ(2)

B log B + O(B) and

N2(B) = 20
3
∏

p

(
1− 2

p2 + 1
p3

)
B log B + O(B(log log B)2).

3.2 A universal torsor
The Cox ring of X over Q is

R(XQ) =
⊕

d∈Pic(XQ)

H0(X,Ld),

where (Ld)d is a suitable system of representatives of every class in the geometric
Picard group; its ring structure is induced by the sum and tensor product of
sections. By [DHH+15, Theorem 4.5, Case 30] (which contains a typo in the
degrees of x and y), it is

R(XQ)] = Q[a, b, c, x, y, z]/(a2 + bc− yz),

and its grading by Pic(XQ) ∼= Pic(X) ∼= Z2 is

a b c x y z
1 1 1 1 2 0
0 0 0 −1 −1 1

.

The pullbacks of planes along π correspond to degree [1, 0], the exceptional
divisor E to degree [0, 1], and the anticanonical bundle thus to degree [4,−1].

Lemma 3.2.1. The variety

TQ = Spec R(XQ)− V (Iirr),

where Iirr = (a, b, c, z)(x, y), is a universal torsor over XQ.
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Proof. In addition to the ring itself, we argue using the bunch of cones Φ asso-
ciated with X [ADHL15, 3.2]. It consists of all cones Cone({deg(t) | t ∈ M})
generated by the degrees deg(t) ∈ Pic(X)Q of a subset M ⊂ {a, b, c, x, y, z} of
the generators satisfiying the following: We have

∏
t∈M t 6∈

√
(t | t 6∈M), that

is, the equation a2 + bc− yz has a solution with t = 0 for t 6∈ M and t 6= 0 for
t ∈M ; and we have ω∨ ∈ Cone({deg(t) | t ∈M}). The bunch of cones is thus

Φ = {Cone ([10], [ 1
−1]) , Cone ([01], [ 1

−1]) , Cone ([10], [ 2
−1]) , Cone ([01], [ 2

−1])} ,

given by, for example, the generators {b, x}, {z, x}, {a, y}, and {a, y, z}, respec-
tively (these are all possible cones containing the anticanonical bundle); the con-
dition is seen to hold by considering the solution (0, 1, 0, 1, 0, 0), (0, 0, 0, 1, 0, 1),
(0, 1, 0, 0, 1, 0), or (1, 0, 0, 0, 1, 1), respectively. Indeed, by [ADHL15, Theorem
3.2.1.9 (ii)], X is defined by a bunched ring with a maximal bunch, which can
only be the bunch Φ just defined.

The irrelevant ideal Iirr is generated by all elements of the form
∏

t∈M t such
that M is a subset of the generators satisfying Cone(deg(t) | t ∈M) ∈ Φ. This
yields

Iirr = (ax, bx, cx, zx, ay, by, cy, zy) = (a, b, c, z)(x, y)

since the minimal subsets suffice.

Denote by p : T → X a morphism rendering T a universal torsor. We
note that the composition of morphisms T → X → P3 maps (a, b, c, x, y, z) →
(a :b :c :xz), that V (x) ⊂ T is the preimage of the strict transform of V (c) ⊂ P3,
the subvariety V (y) ⊂ T is the preimage of the strict transform of V (a2 + bc),
and that V (z) is the preimage of the exceptional divisor E ⊂ X. Next, we
construct an integral model of this torsor. Consider the ring

RZ = Z[a, b, c, x, y, z]/(a2 + bc− yz)

and the ideal Iirr,Z = (a, b, c, z)(x, y) ⊂ RZ.

Lemma 3.2.2. The scheme T = Spec RZ − V (Iirr,Z) is a G2
m,Z-torsor over X .

Proof. We note that removing yz from the generators of Iirr does not change
the radical of the ideal and that the degrees of the two factors of any of the
remaining generators fi ∈ {ax, bx, cx, zx, ay, by, cy} form a basis of the Picard
group. Thus, [FP16, Theorem 3.3] shows that T = Spec RZ−V (Iirr,Z) is a G2

m,Z-
torsor over the Z-scheme X ′ obtained by gluing the spectra of the degree-0-parts
RZ[f−1

i ](0) of the localizations in the generators fi of the irrelevant ideal.
This integral model X ′ of XQ coincides with the blow-up X . Indeed, we can

embed both the Cox ring RZ and the Rees algebra

A =
⊕
n≥0

In = Z[a, b, c, d][(a2 + bc)ξ, dξ]

for I = (a2 + bc, d) into the field Q(a, b, c, d, ξ) = Frac(A), where the first
embedding maps z 7→ ξ−1, x 7→ dξ, and y 7→ (a2 + bc)ξ. The blow-up is
then given by gluing the spectra of the seven rings As,t ⊂ Frac(A) arising the
following way: First take the degree-0-part (with respect to the usual grading
of Z[a, b, c, d], not considering the natural grading of the Rees algebra) of the
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localizations of A in s ∈ {a, b, c, d}, then further localize in one of the generators
t ∈ {a2+bc

s2 ξ, d
s ξ} (t = ξ suffices for s = d) of the Rees algebra and take the

degree-0-part with respect to the grading induced by the natural grading of the
Rees algebra. The rings RZ[f−1

i ](0) for fi = ax, bx, cx, zx, ay, by, cy coincide
with the rings As,t for

(s, t) = (a,
d

a
ξ), (b,

d

b
ξ), (c,

d

c
ξ), (d, ξ), (a, (a2 +bc)ξ), (b, (a2 +bc)ξ), (c, (a2 +bc)ξ),

so the two schemes defined by the blow-up and [FP16, Construction 3.1] coin-
cide.

Lemma 3.2.3. The morphism p induces a 4-to-1-correspondence between inte-
gral points on X and

T (Z) =
{

(a, b, c, x, y, z) ∈ Z6
∣∣∣ a2+bc−yz=0

gcd(a,b,c,z)=gcd(x,y)=1

}
, (3.1)

between integral points on U1 and

T1(Z) =
{

(a, b, c, x, y, z) ∈ Z6
∣∣∣ a2+bc−yz=0

b=±1,gcd(x,y)=1

}
, (3.2)

and between integral points on U2 and

T2(Z) =
{

(a, b, c, x, y, z) ∈ Z6
∣∣∣ a2+bc−yz=0

a=±1,gcd(x,y)=1

}
. (3.3)

Proof. The fiber f−1(P ) of any point P ∈ X (Z) is a G2
m,Z-torsor. Since such

torsors are parametrized by H2
fppf(SpecZ,G2

m) = Cl(Z)2 = 1, all fibers are
isomorphic to G2

m,Z, and we get a 4-to-1-correspondence between integral points
on the torsor T and those on X .

Since T is quasi-affine, its integral points have a description as lattice points
satisfying the equation of the Cox ring and coprimality conditions given by the
irrelevant ideal. Points on the preimages of U1 and U2 under the morphism
p : T → X are defined by the additional condition (b) = 1 and (a) = 1, respec-
tively.

We conclude this section with some observations on the geometry of X.

Lemma 3.2.4. There is no action of G3
a on X with an open orbit under which

D1 or D2 are invariant, and neither is X toric.

Proof. Since G3
a has to act continuously on Pic(X), the exceptional divisor has

to be invariant and we thus get an action on P3 − C. If one of the planes not
containing C is invariant, the action further restricts to the complement A3−C
of a conic in A3. Since the action needs to have an open orbit, we would get an
open immersion A3 → A3 − C, an impossibility by Ax–Grothendieck.

Since its Cox ring is not polynomial, X cannot be toric, cf. [HK00].

Remark 3.2.5. The total variety X is a compactification of G3
a, as classified

by [HM18] (induced by the action of G3
a on P3, where the group acts trivially

on the plane V (d) and by addition on the complement). Manin’s conjecture for
rational points [CLT02] and asymptotics for integral points on some open sub-
varies [CLT12] are known due to Chambert-Loir and Tschinkel: The admissible
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divisors D are the exceptional divisor, the strict transform of V (d), and their
sum. Even though X is an equivariant compactification of G3

a, the pairs (X, Di)
are neither partial equivariant compactifications of G3

a nor toric by the previous
lemma. Our result is thus not a special case of [CLT10b] or [CLT12].

Lastly, we can describe the geometric Picard group with the information we
gathered in the proof of Lemma 3.2.1: The pseudo-effective cone is generated
by the degrees of the generators of the Cox ring, so Eff(X) = Cone(E, H −E).
The semiample cone is the intersection of all cones in Φ and thus SAmple(X) =
Cone(H, 2H − E). In particular, the log-anticanonical bundles

ω(D1)∨ ∼= ω(D2)∨ ∼= OX(3H − E)

are in its interior, and thus ample.

3.3 Metrics, a height function, and Tamagawa
measures

Adelic metrics
We endow certain line bundles on X with adelic metrics. For fixed d ∈ Pic(X),
the elements of degree d in the Cox rings are the global sections of a line bundle
Ld with isomorphism class d (such that Ld ⊗Le = Ld+e by the construction of
the Cox ring). We consider the bundles L[3,−1] and L[1,0] that are isomorphic
to the log-anticanonical bundles ω(D1)∨ ∼= ω(D2)∨ and the pullback of the
tautological bundle π∗OP3(1) ∼= OX(D1) ∼= OX(D2). Neither of the sets

{a2x, b2x, c2x, z2x3, ay, by, cy} and {a, b, c, xz}

of sections of these bundles can vanish simultaneously, so (2.1) gives us the
metrics

(s, (a : b : c : x : y : z)) 7→
|s(a, b, c, x, y, z)|v

max{|a2x|v , |b2x|v , |c2x|v , |z2x3|v , |ay|v , |by|v , |cy|v}
(3.4)

on L[3,−1] and

(t, (a : b : c : x : y : z)) 7→
|t(a, b, c, x, y, z)|v

max{|a|v , |b|v , |c|v , |xz|v}
(3.5)

on L[1,0], where (a :b :c :x :y :z) is the image of (a, b, c, x, y, z) ∈ T (Qv), that is, a
point in Cox coordinates) in X(Qv), s ∈ R(X) has degree [3,−1], and t ∈ R(X)
has degree [1, 0].

A height function
The chosen metric on L[3,−1] defines a log-anticanonical height function on X,
which we can easily describe in Cox coordinates: Since X is proper, every
rational point in X(Q) extends to a unique integral point in X (Z), which in
turn corresponds to four integral points (a, b, c, x, y, z) ∈ T (Z) by Lemma 3.2.3.
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By the coprimality condition and the equation, no prime can divide all of the
monomials in the denominator of (3.4). Thus we get

H(a : b : c : x : y : z) = max{
∣∣a2x

∣∣ , ∣∣b2x
∣∣ , ∣∣c2x

∣∣ , ∣∣z2x3∣∣ , |ay| , |by| , |cy|} (3.6)

for the image (a : b : c : x : y : z) ∈ X(Q) of (a, b, c, x, y, z) ∈ T (Z), with the usual
real absolute value.

Tamagawa measures
To explicitly calculate Tamagawa volumes on our variety X, we need metrics on
the bundles ω, O(D1) and O(D2), not just on bundles isomorphic to them. To
this end, we choose isomorphisms between those bundles and the bundles L[4,−1]
and L[1,0], and identify sections corresponding under those isomorphisms. Up
to scalar, the canonical section 1D1 (resp. 1D2) is the unique section of O(D1)
(resp. O(D2)) corresponding to D1 (resp. D2). This also holds for the elements b
(resp. a) of the degree-[1, 0]-part of the Cox ring (regarded as the global sections
of the bundle L[1,0]), so there are isomorphisms with 1D1 7→ b and 1D2 7→ a,
and we will use these. For the (anti-)canonical bundle, we consider the chart

f : V → A3, (a : b : c : x : y : z) 7→
(

a

xz
,

b

xz
,

c

xz

)
and its inverse

g : A3 → V, (a, b, c) 7→ (a : b : c : 1 : a2 + bc : 1),

where V = X − V (xz) = π−1(V (d)) ∼= A3. The sections da ∧ db ∧ dc and
d

da ∧
d
db ∧

d
dc of the canonical and anticanonical bundle have neither zeroes or

poles on A3 ∼= V , and their tensor product is 1. Up to scalar, they are the
only sections with this property. Since the analogous property holds for x−4z−3

and x4z3, we can fix isomorphisms identifying da ∧ db ∧ dc with x−4z−3 and
d

da ∧
d
db ∧

d
dc with x4z3.

Lemma 3.3.1. For any prime p, we have

τ(X,D1),p(U1(Zp)) = 1 + 1
p

= #U1(Fp)
p3 and

τ(X,D2),p(U2(Zp)) = 1 + 1
p
− 1

p2 = #U2(Fp)
p3 .

Proof. Under the above chart, the integral points U1(Zp) ∩ V (Qp) correspond
to the set{(

a

d
,

1
d

,
c

d

) ∣∣∣∣ a, c, d ∈ Zp

}
= {(a, b, c) ∈ Q3

p | |b| ≥ 1, |a| , |c| ≤ |b|}

and, analogously, U2(Zp) ∩ V (Qp) corresponds to the set

{(a, b, c) ∈ Q3
p | |a| ≥ 1, |b| , |c| ≤ |a|}.
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On U1(Zp) ∩ V (Qp), we have ‖fD1‖O(D1) = ‖b‖O(D1) = |b|
max{|a|,|b|,|c|,|xz|} = 1

and

‖da ∧ db ∧ dc‖ωX

=
max{

∣∣a2x
∣∣ , ∣∣b2x

∣∣ , ∣∣c2x
∣∣ , ∣∣z2x3

∣∣ , |ay| , |by| , |cy|}max{|a| , |b| , |c| , |xz|}
|x4z3|

= max{
∣∣b2∣∣ , 1,

∣∣b(a2 + bc)
∣∣} |b| .

This means that

df∗τ(X,D1),p = (max{
∣∣b2∣∣ , 1,

∣∣b(a2 + bc)
∣∣})−1 |b| dµp

on g−1(U1(Zp)) and, by an analogous argument, that

df∗τ(X,D2),p = (max{
∣∣a2∣∣ , 1,

∣∣a(a2 + bc)
∣∣})−1 |a| dµp

on g−1(U2(Zp)).
With these descriptions we can explicitly compute the volumes. In the first

case, we get

τ(X,D1),p(U1(Zp)) =
∫

|b|≥1
|a|,|c|≤|b|

1
|b|max{|b2| , |b(a2 + bc)|}

d(a, b, c)

=
∫
|a2+bc|≤|b|

|b|≥1
|a|,|c|≤|b|

1
|b|3

d(a, b, c) +
∫
|a2+bc|>|b|

|b|≥1
|a|,|c|≤|b|

1
|b|2 |a2 + bc|

d(a, b, c).

The first of these terms is∫ ∣∣ a2
b +c

∣∣≤1
|b|≥1,|a|≤|b|

1
|b|3

d(a, b, c) =
∫

|b|≥1
|a|≤|b|

1
|b|3

d(a, b) =
∫

|b|≥1

1
|b|2

db

=
∑
k≥0

1
p2k

(
1− 1

p

)
pk = 1,

while the second is∫
1<
∣∣ a2

b +c
∣∣≤|b|

|b|≥1,|a|≤|b|

1
|b|3 ( a2

b + c)
d(a, b, c) =

∫
|b|≥1

|a|≤|b|

1
|b|3

|v(b)|∑
k=1

1
pk

(
1− 1

p

)
pk d(a, b)

=
(

1− 1
p

)∫
|b|≥1

|a|≤|b|

|v(b)|
|b|3

d(a, b) =
(

1− 1
p

)∫
|b|≥1

|v(b)|
|b|2

db

=
(

1− 1
p

)∑
k≥0

k

p2k

(
1− 1

p

)
pk = 1

p
,

so τp(U1(Zp)) = 1 + 1
p = #U1(Fp)

p3 . The volume τ(X,D2),p(U2(Zp)) is calculated
similarly.

In both cases, the Clemens complex of Di is simply a vertex, and we are
interested in the residue measure τDi

, as well as the constant αDi
associated

with its unique maximal face Di.
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Lemma 3.3.2. We have τD1,∞(D1(R)) = τD2,∞(D2(R)) = 40.

Proof. The adjunction isomorphism induces a metrization of ωD1 via

‖da ∧ dc‖ωD1
= ‖da ∧ db ∧ dc‖ωX

‖b‖−1
O(−D1) . (3.7)

Since da ∧ db ∧ dc corresponds to x4z3 ∈ R(X), the first factor of (3.7) is

max{
∣∣a2x

∣∣ , ∣∣b2x
∣∣ , ∣∣c2x

∣∣ , ∣∣z2x3
∣∣ , |ay| , |by| , |cy|}max{|a| , |b| , |c| , |xz|}
|x4z3|

= max{
∣∣a2∣∣ , ∣∣c2∣∣ , 1,

∣∣a3∣∣ , ∣∣a2c
∣∣}max{|a| , |c| , 1},

when evaluated in (a : 0 : c : 1 : a2 : 1) ∈ V ∩ D1. On the affine variety
V , regarding b as an element of Γ(V,OV (−D1)) ⊂ OV (V ), using the canonical
trivialization of O(−D1) outside D1 and the fact that 1D1 corresponds to b ∈
R(X) under our chosen isomorphism, we get

lim
b→0

(
|b|

‖1D1‖O(D1)

)−1

= lim
b→0

(
|b|max{|a| , |b| , |c| , |xz|}

|b|

)−1

= max{|a| , |c| , 1}−1

for the second factor. We thus have explicit descriptions

df∗τ ′
D1,∞ = ‖da ∧ dc‖−1

ωD1
d(a, c) = 1

max{|a2| , |c2| , 1, |a3| , |a2c|}
d(a, c)

and, by an analogous argument,

df∗τ ′
D2,∞ d(b, c) = 1

max{|b2| , |c2| , 1, |b2c| , |bc2|}
d(b, c)

of the unnormalized Tamagawa measures τ ′
D1,∞ and τ ′

D2,∞ with respect to the
Lebesgue measure. For the volume of the first divisor, we now get

τ ′
D1,∞(D1(R)) =

∫
|a|,|a2c|≤1

1
max{|c2| , 1}

d(a, c) +
∫

|a|≥|c|
|a|>1

1
|a3|

d(a, c)

+
∫

|c|>|a|
|a2c|>1

1
max{|c2| , |a2c|}

d(a, c).

The first term of this expression is 20
3 by (3.10) below, the second is

∫
|a|

2
|a2| = 4

and the third is∫
|c|>|a|,|a2c|>1
|a2|>|c|

1
|a2c|

d(a, c) +
∫

|c|>a,|a2c|>1
|a2|≤|c|

1
|c2|

d(a, c). (3.8)

In (3.8), the first term is∫
|c|≥1

|c|1/2<|a|<|c|

1
|a2c|

d(a, c) =
∫

|c|≥1

2
|c|

(|c|1/2 − |c|−1) dc = 4
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and the second is∫
a∈R

2
max{|a2| , |a−2|}

da =
∫

|a|≤1
2 |a|2 da +

∫
|a|>1

2
|a2|

da = 16
3

.

Thus, (3.8) is 28
3 and τ ′

D1,∞(D1(R)) = 20
3 + 4 + 28

3 = 20.
For the other divisor, we get τ ′

D2,∞(D2(R)) = 20 by similar arguments, and
have to normalize both volumes by multiplying with cR = 2.

In both cases, we have UDi
= X for the unique maximal face Di of the

Clemens complex, so Pic(U ; Di) = Pic(X). Hence bDi
= 2 = b′

Di
. In order

to compute α, we consider the pseudo-effective cone Eff(X) ⊂ Pic(X)R and its
characteristic function XEff(X)(L). Since the cone is smooth and generated by
E and H −E, and ω(Di)∨ ∼= OX(3(H −E) + 2E) for both i = 1 and i = 2, we
get

αDi
= 1

(b− 1)!
XEff(X)(ω(Di)∨) = 1

6
for both divisors D1 and D2.

3.4 Integral points on X −D1

We study the number

N1(B) = #{x ∈ U1(Z) ∩ V1(Q) | H(x) ≤ B}

of integral points of bounded height on U1 = X − V (b) that, as rational points,
are in the complement V1 of the subvariety V (abxz) = π−1(V (abd)).

Using the 4-to-1-correspondence (3.2) with integral points on the universal
torsor T1 and noticing the symmetry in the two values ±1 of b in (3.2), this
description of integral points on the universal torsor yields the formula

N1(B) = 1
2

#
{

(a, c, x, y, z) ∈ Z5
∣∣∣ a2+c−yz=0, gcd(x,y)=1,

H(a,1,c,x,y,z)≤B, a,x,z 6=0

}
,

where

H(a, b, c, x, y, z) = max {
∣∣a2x

∣∣ , ∣∣b2x
∣∣ , ∣∣c2x

∣∣ , ∣∣z2x3∣∣ , |ay| , |by| , |cy|}

by (3.6). Solving the equation, we can simplify this to

1
2

#
{

(a, x, y, z) ∈ Z4
∣∣∣ gcd(x,y)=1, H̃1(a,x,y,z)≤B,

a,x,z 6=0

}
,

where

H̃1(a, x, y, z) = H(a, 1, yz − a2, x, y, z)
= max{

∣∣a2x
∣∣ , |x| , ∣∣(yz − a2)2x

∣∣ , ∣∣z2x3∣∣ , |ay| , |y| ,
∣∣(yz − a2)y

∣∣}.
Lemma 3.4.1. We have

N1(B) = 1
2
∑
α>0

µ(α)
α

∑
x′,z∈Z 6=0

∫
|a2αx′|,|a(a2+c)z−1|,
|c2αx′|,|c(a2+c)z−1|,
|α3x3z2|≤B,|a|≥1

1
|z|

d(a, c) + O(B).
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Proof. A Möbius inversion yields

N1(B) =
∑
α>0

µ(α)
∑

a,x′,z∈Z6=0

#{y′ ∈ Z | H̃1(a, αx′, αy′, z) ≤ B},

and we can estimate the number of points by the volume

#{y ∈ Z | H̃1(a, αx′, αy′, z) ≤ B} =
∫

H̃1(a,αx′,αy′,z)≤B

dy′ + R(α, a, x′, z; B),

where we denote the integral by V1(α, a, x′, z; B). Since all integrands f and the
regions defined by height functions are semialgebraic, we get |R(α, a, x′, z; B)| �
1 and similar error terms of the form C maxξ |f | when replacing the sum over a
variable ξ by an integral in the next steps using [DF14, Lemma 3.6]. Using this
and the height conditions

∣∣αa2x′
∣∣ , ∣∣α3z2x′3

∣∣ < B, we can bound the sum over
the error terms by∑

α>0,
a,x′,z∈Z6=0

|µ(α)R(α, a, x′, z; B)| �
∑
α>0,

x′∈Z 6=0

B

|αx′|2
� B,

and get N1(B) =
∑

α µ(α)
∑

a,x′,z

∫
H̃1(a,αx′,αy′,z)≤B

dy′ + O(B). Turning to the
variable a next we estimate the sum

∑
a∈Z6=0

V1(α, a, x′, z; B) by the integral
V2(α, x′, z; B) =

∫
V1(α, a, x′, z; B) da, introducing an error term R2(α, x′, z; B).

Using the height condition
∣∣αy′z − a2

∣∣ ≤ B to estimate the integral over y′ and
α3x3z2 to estimate the sum, we can bound the total error by∑

α>0,
x′,z∈Z6=0

|R2(α, x′, z; B)| �
∑
α>0,

x′,z∈Z6=0

sup
a∈Z6=0

V1(α, a, x′, z; B)

�
∑
α>0,

x′,z∈Z 6=0

B1/2

α |x′|1/2 |z|
�

∑
α>0,

z∈Z6=0

B2/3

α3/2 |z|4/3 � B2/3.

A change of variables c = αy′z − a2 now gives us the description

V2(α, x′, z; B) =
∫

|a|≥1
V1(α, a, x′, z; B) da =

∫
|a2αx′|,|a(a2+c)z−1|,
|c2αx′|,|c(a2+c)z−1|,
|α3x3z2|≤B,|a|≥1

1
|αz|

d(a, c)

of the main term.

Lemma 3.4.2. We have

N1(B) = 1
2
∑
α>0

µ(α)
α2

∫
|a2x|,|a3z−1|,|c2x|,
|a2cz−1|,|x3z2|≤B,

|a|,|z|≥1,|x|≥α

1
|z|

d(a, c, x, z) + O(B). (3.9)

Proof. We first want to replace the two instances of a2+c by a2 in the inequalities
defining the region for the volume function V2 of the previous lemma, to get a
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new volume function V ′
2(α, x′, z; B). The error we introduce when replacing∣∣a(a2 + c)z−1

∣∣ by
∣∣a3z−1

∣∣ is bounded by the integral over the region

B −
∣∣∣ac

z

∣∣∣ ≤ ∣∣∣∣a3

z

∣∣∣∣ ≤ B +
∣∣∣ac

z

∣∣∣ , i.e.,
∣∣∣∣a2 − B |z|

|a|

∣∣∣∣ ≤ |c| .
With a change of variables a′ = a2 −B |z| |a|−1, where∣∣∣∣da′

da

∣∣∣∣ = 2 |a|+ B |z|
|a|2

≥
√
|a′|,

we get a bound for the total error:

|R1(B)| �
∑
α>0

2
α

∑
x′,z∈Z6=0

∫
|a′|≤|c|,|αc2x′|,
|α3x′3z2|≤B

1√
|a′| |z|

d(a′, c)

�
∑
α>0

1
α

∑
x′,z∈Z6=0

∫
|α3x′3z2|,
|αc2x′|≤B

√
|c|
|z|

dc�
∑
α>0

1
α

∑
x′,z∈Z 6=0

|α3x′3z2|≤B

B3/4

α3/4 |x|3/4 |z|

�
∑
α>0

z∈Z 6=0

B5/6

α7/4 |z|7/6 � B5/6.

When modifying the other inequality, the error we introduce is bounded by an
integral over a similar region, and, after an analogous change of variables, we
get the same bound.

Next, we estimate the summation over z. Using the height conditions |a| ≤
B1/3 |z|1/3 and |c| ≤ B1/2 |αx|−1/2, we can bound the volume

V ′
2(α, x′, z; B)� B5/6 |αx|−1/2 |z|−2/3 .

Replacing the sum over z by an integral, we introduce an error

|R2(B)| �
∑
α>0

1
α3/2

∑
1≤|x′|≤B1/3

B5/6

|x|1/2 � B.

For V3(α, x′; B) =
∫

|z|≥1 V ′
2(a, x′, z; B) dz, we get an upper bound

V3(α, x′; B)�
∫

|α3x′3z2|≤B

B5/6

α1/2 |x′|1/2 |z|2/3 dz � B

α |x′|
.

Finally, replacing the sum over x′ by an integral
∫

|x′|≥1 V3(α, x′; B) introduces
an error term

|R3(B)| �
∑
α>0

B

α2 � B,

and a change of variables x = αx′ completes the proof.

Proposition 3.4.3. The number of integral points of bounded height on U2
satisfies the asymptotic formula

N1(B) = 20
3ζ(2)

B log B + O(B).
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Proof. We first remove the condition |a| ≥ 1 in (3.9) and get an error term

|R1(B)| �
∑

α

1
α2

∫
|c2x|,|x3z2|≤B,

|x|≥α

d(c, x, z)�
∑

α

1
α2

∫
|x|≥α

B

|x|2
dx

�
∑

α

B

α3 � B.

By a change of variables a 7→ az−1/3B−1/3, c 7→ cz−1/3B−1/3, x 7→ az2/3B−1/3,
we now have

N1(B) = 1
2
∑
α>0

µ(α)
α2

∫
|a2x|,|c2x|,|a|,
|a2c|,|x|≤1,

1≤|z|≤|x|3/2B1/2α−3/2

B

|z|
d(a, c, x, z) + O(B)

= 1
2
∑
α>0

µ(α)
α2

∫
|a2x|,|c2x|,|a|,
|a2c|,|x|≤1

B
(

log
(

B |x|3 α−3
))

d(a, c, x) + R2(B) + O(B)

= 1
2
∑
α>0

µ(α)B log B

α2

∫
|a2x|,|c2x|,|a|,
|a2c|,|x|≤1

d(a, c, x) + R3(B) + O(B)

= B log B

ζ(2)

∫
|a|,|a2c|≤1

1
max{1, |a2| , |c2|}

d(a, c) + O(B)

since the error terms are

|R2(B)| �
∑
α≥1

B

α2

∫
|x|3/2α−3/2B1/2,

|a|,|c2x|≤1

∣∣∣log
(

B |x|3 α−3
)∣∣∣ d(a, c, x)

�
∑
α≥1

B

α2

∫
|x|≤αB−1/3

3
∣∣∣log

(
B1/3 |x|α−1

)∣∣∣ 1
|x|1/2 dx

�
∑
α≥1

B

α2
α1/2

B1/6

(
2− log

(
B1/3α−1B−1/3α

))
� B5/6

and

|R3(B)| �
∑
α≥1

B

α2

∫
|a|,|c2x|,|x|≤1

3
∣∣∣∣log

(
|x|
α

)∣∣∣∣ d(a, c, x)

�
∑
α≥1

B

α2

∫
|x|≤1

1
|x|1/2

∣∣∣∣log
(
|x|
α

)∣∣∣∣ dx�
∑
α≥1

B

α2 (2 + log(α))� B.

Finally, we note that the integral evaluates to∫
|a|,|a2c|≤1

1
max{1, |c2|}

d(a, c) =
∫

c∈R

2 min{1, |c|−1/2}
max{|c2| , 1}

dc

=
∫

|c|≤1
2 dc +

∫
|x|>1

2
|c|5/2 dc = 20

3
,

(3.10)

and arrive at the asymptotic expression.
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3.5 Integral points on X −D2

We count the number

N2(B) = #{x ∈ U1(Z) ∩ V2(Q) | H(x) ≤ B}

of integral points of bounded height on U2 = X −V (a), that, as rational points,
are in the complement V2 of V (abcxz) = π−1(V (abcd)). With the 4-to-1-
correspondence to integral points on the torsor, and noticing the symmetry
in the two possible values a = ±1 of a in (3.3), we get

N2(B) = 1
2

#
{

(b, c, x, y, z) ∈ Z5
∣∣∣∣ 1+bc−yz=0, gcd(x,y)=1,

H(1,b,c,x,y,z)≤B,
b,c,x,z 6=0

}
. (3.11)

Lemma 3.5.1. We have

N2(B) =
∑

b,x,z∈Z6=0

θ1(b, x, z)V1(b, x, z; B) + O(B),

where
V1(b, x, z; B) = 1

2

∫
H̃2(b,c,x,z)≤B
|b|,|c|,|x|,|z|≥1

1
|z|

dc

with

H̃2(b, c, x, z) = H(1, b, c, x, (1 + bc)z−1, z)

= max
{
|x| ,

∣∣b2x
∣∣ , ∣∣c2x

∣∣ , ∣∣z2x3∣∣ , ∣∣∣∣ (1 + bc)
z

∣∣∣∣ , ∣∣∣∣b(1 + bc)
z

∣∣∣∣ , ∣∣∣∣c(1 + bc)
z

∣∣∣∣} ,

and θ1(b, x, z) =
∏

p θ
(p)
1 (b, x, z) with

θ
(p)
1 (b, c, z) =


0, p | b, p | z,
1− 1

p , p ∤ b, p | x,
1, else.

Proof. Using a Möbius inversion to remove the condition gcd(x, y) = 1 in (3.11),
and setting y′ = y

α , we get

N2(B) = 1
2

∑
b,x,z∈Z 6=0

∑
α|x

µ(α)Ñ2(α, b, x, z; B),

where
Ñ2(α, b, x, z; B) = #

{
(c, y′) ∈ Z2

∣∣∣ c 6=0, 1+bc−y′αz=0,
H(1,b,c,x,αy′,z)≤B

}
.

To estimate Ñ2, we first note that Ñ2(α, b, x, z; B) = 0 whenever αz and b are
not coprime. If they are coprime, we estimate

Ñ2(α, b, x, z; B) = #
{

c ∈ Z6=0

∣∣∣ bc≡−1 (mod αz),

H̃2(b,c,x,z)≤B

}
=
∫

H̃2(b,c,x,z)≤B
|c|≥1

1
|αz|

dc + R(α, b, x, z; B).
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Analogously to the first case, we get an error term |R(α, b, x, z; B)| � 1. This
inequality together with the height conditions

∣∣b2x
∣∣ ≤ B and

∣∣z2x3
∣∣ ≤ B allows

us to bound the summation over the error terms:∑
b,x,z∈Z6=0

|b2x|,|z2x3|≤B

∑
α|x

(b,αz)=1

|µ(α)R(b, x, z; B)| �
∑

b,x,z∈Z6=0

|b2x|,|z2x3|≤B

2ω(x)

�
∑

x∈Z6=0

2ω(x)B

|x|2
� B.

We arrive at

N2(B) =
∑
b,x,z

∑
α|x

(b,αz)=1

µ(α)
α

V1(b, x, z; B) + O(B),

where
V1(b, x, z; B) = 1

2

∫
H̃2(b,c,x,z)≤B
|b|,|c|,|x|,|z|≥1

1
|z|

dc.

Using the multiplicativity of µ and gcd, we can factor the sum over α

∑
α|x

(b,αz)=1

µ(α)
α

=
∏

p


0, p | b, p | z,
1− 1

p , p ∤ b, p | x,
1, else

to get a description of the arithmetic term θ1.

Lemma 3.5.2. We have

N2(B) =
∑
b,z

θ2(x, z)V2(x, z; B) + O(B
(
log log B)2) ,

where
V2(x, z; B) = 1

2

∫
H̃2(b,c,x,z)≤B
|b|,|c|,|x|,|z|≥1

1
|z|

d(b, c)

and θ2(x, z) =
∏

p θ
(p)
2 with

θ
(p)
2 =


(1− 1

p )2, p | x, z,
1− 1

p + 1
p2 , p | x, p ∤ z,

1− 1
p , p ∤ x, p | z,

1, p ∤ x, z.

Proof. Using the height conditions
∣∣c2x

∣∣ , ∣∣b(1 + bc)z−1
∣∣ ≤ B to estimate the

integral, we can bound the volume function by the geometric average

V1(b, x, z; B)� 1
|z|

(
B1/2

|x|1/2

)2/3(
B |z|
|b|2

)1/3

= B2/3

|b|2/3 |x|1/3 |z|2/3

= B

|bxz|

(
B

|b2x|

)−1/6(
B

|z2x3|

)−1/6

.
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Since the integral is zero whenever
∣∣b2x

∣∣ ≥ B or
∣∣z2x3

∣∣ ≥ B, the assertion
follows by [Der09, Proposition 3.9] with r = 0, s = 2. (In the notation of
loc. cit. we consider the ordering η0 = b, η1 = x, η2 = z of the variables, take
a1 = a2 = 1/6, and ki,j to be the exponents in these two height conditions.
Note that θ1 satisfies [Der09, Definition 7.8], and hence the requirements of the
proposition.).

Lemma 3.5.3. We have

N2(B) = 1
2
∏

p

(
1− 2

p2 + 1
p3

)∫
H̃2(b,c,x,z)≤B
|b|,|c|,|x|,|z|≥1

1
|z|

d(b, c, x, z) + O(B(log log B)2).

Proof. Using the same estimate for the integral over c as in the previous lemma
and estimating the integral over b using the height condition

∣∣b2x
∣∣ ≤ B, we get

the bound

V2(x, z; B)�
∫

1≤|b|≤B1/2|x|−1/2

B2/3

|b|2/3 |x|1/3 |z|2/3 �
B5/6

|x|1/2|z|2/3

� B

|xz|

(
B

|x|3 |z|2

)−1/6

for the volume function V2. Since V2(b, z; B) = 0 whenever
∣∣z2x3

∣∣ > B, we get
an asymptotic formula by [Der09, Proposition 4.3] (with r = s = 1). We are
only left to see that the constant is indeed

∏
p

(
1
p2

(
1− 1

p

)2

+ 1
p

(
1− 1

p

)(
2− 2

p
+ 1

p2

)
+
(

1− 1
p

)2
)

=
∏

p

(
1− 2

p2 + 1
p3

)
.

Proposition 3.5.4. We have

N2(B) = cB log(B) + O(B(log log B)2),

where
c = 20

3
∏

p

(
1− 2

p2 + 1
p3

)
.

Proof. We have to estimate the integral in the previous lemma. We first want
to replace (1 + bc) by bc in the height conditions. In the case of the condition
b(1 + bc)/z, this leaves us with an error term R1(B) that can be bounded
by the integral over the region defined by B −

∣∣ b
z

∣∣ ≤ ∣∣∣ b2c
z

∣∣∣ ≤ B +
∣∣ b

z

∣∣, i.e.,∣∣Bz
b2

∣∣− 1
|b| ≤ |c| ≤

∣∣Bz
b2

∣∣+ 1
|b| , and the remaining height conditions, so that

|R1(B)| �
∫
|b2x|,|x2z3|

|b|,|z|≥1

1
|bz|

d(b, x, z)�
∫

B1/2

|bz|3/2 d(b, z)� B1/2.
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The condition c(1 + bc)/z can be dealt with analogously. Next, we remove the
condition |b| ≥ 1, where we get an error term

|R2(B)| �
∫

|c|≤ B1/2

|x1/2| ,|x|≤ B1/3

|z|2/3

|z|≥1

1
|z|

d(c, x, z)�
∫

|x|≤ B1/3

|z|2/3

|z|≥1

B1/2

|x|1/2 |z|
d(x, z)

�
∫

|x|≤ B1/3

|z|2/3

|z|≥1

B2/3

|z|4/3 d(z)� B2/3,

and subsequently remove |c| ≥ 1 analogously. Thus, we can estimate the integral
in the previous lemma as V3(B) + O(B2/3), where

V3(B) =
∫
|b2x|,|c2x|,|x3z2|,
|b2cz−1|,|bc2z−1|≤B,

|x|,|z|≥1

1
|z|

d(b, c, x, z).

By a change of variables b 7→ B−1/3bz−1/3, c 7→ B−1/3cz−1/3, x 7→ B−1/3xz2/3,
we get

V3(B) = B

∫
|b2x|,|c2x|,|x|,
|b2c|,|bc2|≤1,

1≤|z|≤B1/2|x|3/2

1
|z|

d(b, c, x, z)

= 2B

∫
|b2x|,|c2x|,|x|,
|b2c|,|bc2|≤1

log
(

B1/2 |x|3/2
)

d(b, c, x) + R3(B)

= B log B

∫
|b2x|,|c2x|,|x|,
|b2c|,|bc2|≤1

d(b, c, x) + R3(B) + R4(B)

= 2B log B

∫
|b2c|,|bc2|≤1

max{
∣∣b2∣∣ , ∣∣c2∣∣ , 1}−1 d(b, c)

+ R3(B) + R4(B).

(3.12)

The error terms are

|R3(B)| � B

∫
|x|≤B−1/3

|b2c|,|bc2|≤1

∣∣∣log(B1/2 |x|3/2)
∣∣∣ d(b, c, x)

� B

∫
|b2c|,|bc2|≤1

3
2

B−1/3 d(b, c)� B2/3

(∫
|c|≤1

1√
|c|

dc +
∫

|c|>1

1
c2 dc

)
� B2/3

and

|R4(B)| � B

∫
|b2c|,|bc2|,

|x|≤1

∣∣∣log
(
|x|3/2

)∣∣∣ d(b, c, x)�
∫

|b2c|,|bc2|≤1
d(b, c)� B.
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The integral at the end of (3.12) then further evaluates to∫
|b2c|,|bc2|≤1

1
max{|b2| , |c2| , 1}

d(b, c) = 2
∫

|b|≥|c|
|b2c|≤1

1
max{|b2| , 1}

d(b, c)

= 2
∫ 2 min{|b| ,

∣∣b−2
∣∣}

max{|b2| , 1}
db =

∫
|b|≤1

4 |b|db +
∫

|b|>1

4
|b4|

db = 20
3

,

and we get the desired asymptotic.





Chapter 4

Integral points on a singular
quartic del Pezzo surface

This chapter is joint work with Ulrich Derenthal.

4.1 Introduction
Let S ⊂ P4

Q be the quartic del Pezzo surface over Q defined by

x2
0 + x0x3 + x2x4 = x1x3 − x2

2 = 0.

It has an A1-singularity Q1 = (0 : 1 : 0 : 0 : 0) and an A3-singularity Q2 =
(0 : 0 : 0 : 0 : 1). See [Der09, Section 8] for a proof of Manin’s conjecture for
S over Q, [FP16] for a proof over arbitrary number fields. We are interested
in the number of integral points on S \Qi of bounded log-anticanonical height.
More precisely, let S ⊂ P4

Z be the integral model of S defined by the same
equations. An integral point on S \ Qi is a rational point x ∈ S(Q) such that
the corresponding integral point in S(Z) does not meet the closure Qi of Qi

in S(Z); in other words, writing x = (x0 : · · · : x4) with coprime integral
coordinates, (x0 : · · · : x4) 6≡ Qi (mod p) for all primes p. We set Ui = S \ Qi

and Ui = S \ Qi, and have the sets Ui(Z) of integral points. Let V be the
complement of the three lines

{x0 = x1 = x2 = 0}, {x0 + x3 = x1 = x2 = 0} and {x0 = x2 = x3 = 0}

on S. We consider the following height functions: For an integral point x =
(x0, . . . , x4) ∈ U1(Z), we set

H1(x) = max{|x0| , |x2| , |x3| , |x4|},

and for an integral point x ∈ U2(Z), we set

H2(x) = max{|x0| , |x1| , |x2| , |x3|}.

In Lemma 4.2.1 we will see that these two height functions are log-anticanonical
on the minimal desingularization of S.

59
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E8

E9

E7 E5 E6 E4 E3

E1

E2

Figure 4.1: Configuration of the divisors Ei.

Theorem 4.1.1. Let Ni(B) := #{x ∈ Ui(Z) ∩ V (Q) | Hi(x) ≤ B}. Then

N1(B) = 13
540

(∏
p

(
1− 1

p

)5(
1 + 5

p

))
B(log B)5 + O(B(log B)4 log log B),

N2(B) = 1
32

(∏
p

(
1− 1

p

)3(
1 + 3

p

))
B(log B)4 + O(B(log B)3 log log B).

Interpreting them on the minimal desingularization S̃ of S, these asymptotic
formulas satisfy

Ni(B) = ci,∞ci,finB(log B)bi−1(1 + o(1)),

with

ci,∞ =
∑

A

αAτDA,∞(DA(R)),

ci,fin =
∏

p

(
1− 1

p

)rk Pic(Ui)

τUi,p(Ui(Zp)),

where the sum runs over all maximal dimensional faces of the Clemens complex
Can
R (Di) of the preimage of Qi, and bi is the exponent associated with these faces.

4.2 Counting

We use the notation of [Der09, Section 8], in particular the numbering of the
divisors Ei corresponding to the generators of the Cox ring.

Let S̃ be the minimal desingularization of S as in [Der14]. Let the divisor
D1 = E7 be the (−2)-curve on S̃ corresponding to the singularity Q1 on S, and
the divisor D2 = E3 + E4 + E6 the sum of the (−2)-curves corresponding to
Q2, and let Ũi = X −Di. Let Ṽ ⊂ S̃ be the complement of the negative curves
E1, . . . , E7.

The Cox ring of S̃ is Q[η1, . . . , η9]/(η1η9 + η2η8 + η4η3
5η2

6η7); in the basis
l0, . . . , l5 of Pic(S̃), its grading is given by
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η1 η2 η3 η4 η5 η6 η7 η8 η9
0 0 1 0 0 0 1 1 1
0 0 −1 1 0 0 −1 0 0
0 0 0 −1 0 1 −1 0 0
0 0 0 0 1 −1 −1 0 0
0 1 −1 0 0 0 0 −1 0
1 0 −1 0 0 0 0 0 −1

,

and its irrelevant ideal is Iirr =
∏

(ηi, ηj), where the product runs over all pairs
i, j such that there is no edge between Ei and Ej in Figure 4.1. The sections

{η2η3η4η5η6η7η8, η2
1η2

2η3
3η2

4η6, η1η2η2
3η2

4η2
5η2

6η7, η3η2
4η4

5η3
6η2

7 , η7η8η9}

have anticanonical degree and define the morphism S̃ → S.
The desingularization S̃ is given by a certain sequence of five blow-ups of P2

in rational points. Let S̃ be the integral model defined by the same sequence
of blow-ups of P2

Z, and let Ũi = S − Di. Consider the open subscheme Y
of the spectrum of RZ = Z[η1, . . . , η9]/(η1η9 + η2η8 + η4η3

5η2
6η7) defined as the

complement of Iirr∩RZ. By [FP16, 4.1], it is a G6
m,Z-torsor over S̃ via a morphism

π : Y → S̃. The same sections as above now also induce a morphism S̃ → S. In
particular, this morphism induces bijections

Ũi(Z) ∩ Ṽ (Q)←→ Ui(Z) ∩ V (Q).

Lemma 4.2.1. The log-anticanonical bundles ω
S̃

(Di)∨ are big and nef. Neither
of the sets of monomials in Cox(S̃) of degree ω

S̃
(Di)∨

{η2η3η4η5η6η8, η1η2η2
3η2

4η2
5η2

6 , η3η2
4η4

5η3
6η7, η8η9} and

{η2η5η7η8, η2
1η2

2η2
3η4, η4η4

5η2
6η2

7}

has a common zero on S̃.

Proof. For the first set, assume that η8η9 = 0. Then η3, . . . , η6 have to be non-
zero, since the corresponding divisors E3, . . . , E6 share an edge with neither E8
nor E9 in Figure 4.1 (i.e., the corresponding divisors do not intersect). If η8 = 0,
then η1 6= 0 (since E8 does not share an edge with E1), and only one of the
sections η2 and η7 can vanish (since E2 and E7 do not share an edge); hence
the second or third section is non-zero. Analogously, if η9 = 0, then η2 6= 0, and
only one of η1 and η7 can vanish; again, the second or third section is non-zero.

For the second set, assume that its first section vanishes. If η2 vanishes,
the third section cannot vanish; if η5 or η7 vanishes, the second section cannot
vanish; if η8 vanishes, only one of η2 and η7 can vanish, while the other factors
of the second and third section cannot vanish, so one of these two sections does
not vanish.

In particular, this means that both log-anticanonical divisors are base point
free, hence nef. Moreover, the height conditions in [Der09, Lemma 8.3] show
that

−K = E1 + E2 + 2E3 + 2E4 + 2E5 + 2E6 + E7 = E3 + 2E4 + 4E5 + 3E6 + 2E7,
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hence

−K −D1 = 1
2

(E1 + E2 + 2E3 + 2E4 + 2E5 + 2E6)

+ 1
2

(E3 + 2E4 + 4E5 + 3E6 + E7),

−K −D2 = E1 + E2 + E3 + E4 + 2E5 + E6 + E7,

which are positive linear combinations of all negative curves (i.e., of the gener-
ators of the effective cone), so both log-anticanonical divisors are big.

These two sets of sections then define an adelic metric on line bundles iso-
morphic to ω

S̃
(Di)∨, as well as log-anticanonical height functions H1 and H2.

These give us an explicit description of our counting problem: Integral points
on Y are lattice points (η1, . . . , η9) ∈ Z9 satisfying the equation in the Cox ring
and the coprimality condition induced by the irrelevant ideal

gcd(ηi, ηj) = 1 if Ei and Ej do not share an edge in Figure 4.1. (4.1)

The log-anticanonical height of the image of such a point is the maximum of the
absolute values of the sections in Lemma 4.2.1. Integral points on π−1(Ũ1) ⊂ Y
are precisely those satisfying η7 ∈ {±1}, and integral points on π−1(Ũ2) are
those satisfying η3, η4, η6 ∈ {±1}. In total, we get the following:

Lemma 4.2.2. Let

H1(η1, . . . , η6, η8) := max

{
|η2η3η4η5η6η8|, |η1η2η2

3η2
4η2

5η2
6 |,

|η3η2
4η4

5η3
6 |, |(η2η2

8 + η4η3
5η2

6η8)/η1|

}
,

H2(η1, η2, η5, η7, η8) := max{|η2η5η7η8|, |η2
1η2

2 |, |η4
5η2

7 |}.

Then these log-anticanonical heights coincide with the heights defined in the
introduction, and we have

N1(B) = 1
25 #

(η1, . . . , η6, η8, η9) ∈ Z8

∣∣∣∣∣∣∣
η1η9 + η2η8 + η4η3

5η2
6 = 0,

H1(η1, . . . , η6, η8) ≤ B,

η1 · · · η6 6= 0, (4.1) holds

 ,

N2(B) = 1
23 #

(η1, η2, η5, η7, η8, η9) ∈ Z6

∣∣∣∣∣∣∣
η1η9 + η2η8 + η3

5η7 = 0,

H2(η1, η2, η5, η7, η8) ≤ B,

η1η2η5η7 6= 0, (4.1) holds

 .

Proof. Since Y is a G6
m,Z-torsor over S̃, the morphism π induces a 26-to-1-

correspondence between integral points on Y and S̃. We can solve the equation
by η9 to remove the last variable from the height function, and remove those
variables which are ∈ {±1}. By symmetry, we can assume η7 = 1 in the first
case, and η3 = η4 = η6 = 1 in the second case. The preimage of Ṽ in the
universal torsor is the complement of η1 · · · η7 = 0, so π induces a 25-to-1-, resp.
23-to-1-correspondence between the above sets and points on Ũ1(Z) ∩ Ṽ (Q),
resp. Ũ2(Z) ∩ Ṽ (Q) of log-anticanonical height ≤ B.

To see that these height functions coincide with the ones defined in the
introduction, we note that, for example, for a point in π−1(Ũ1)(Z) we have η7 ∈
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{±1}, and thus |η2η3η4η5η6η8| = |η2η3η4η5η6η7η8| = |x0|. We get analogous
identities for the other coordinates. There is no section corresponding to x2
in the second height function, but, for integral points on π−1(Ũ2), we have
|x2| =

√
|η2

1η2
2 | |η4

5η2
7 | =

√
|x1x3|, hence it can never contribute to the maximum.

Together with the remark before Lemma 4.2.1, we get the comparison between
the subsets of Y(Z) in the lemma, and integral points in Ui(Z)∩V (Q) of height
≤ B.

Lemma 4.2.3. We have

N1(B) = 1
25

∑
η1,...,η6∈Z6=0

θ1(η1, . . . , η6, 1)V1,1(η1, . . . , η6; B) + O(B log B),

N2(B) = 1
23

∑
η1,η2,η5,η7∈Z6=0

θ1(η1, η2, 1, 1, η5, 1, η7)V2,1(η1, η2, η5, η7; B)

+ O(B log B)

with

V1,1(η1, . . . , η6; B) :=
∫

H1(η1,...,η6,η8)≤B

dη8

|η1|
,

V2,1(η1, η2, η5, η7; B) :=
∫

H2(η1,η2,η5,η7,η8)≤B

dη8

|η1|
,

and θ1 as in [Der09, Lemma 8.4], namely

θ1(η1, . . . , η7) =
∏

p

θ1,p(Ip(η1, . . . , η7))

where Ip(η1, . . . , η7) = {i ∈ {1, . . . , 7} : p | ηi} and

θ1,p(I) =


1, I = ∅, {1}, {2}, {7}
1− 1

p , I = {4}, {5}, {6}, {1, 3}, {2, 3}, {3, 4}, {4, 6}, {5, 6}, {5, 7},
1− 2

p , I = {3},
0, else.

Proof. The proof is as in [Der09, Lemma 8.4], with slightly different height
functions and some ηi = 1, which leads to different error terms. In the first
case, using the second height condition, it is

�
∑

η1,...,η6

2ω(η3)+ω(η3η4η5η6) �
∑

η2,...,η6

2ω(η3)+ω(η3η4η5η6)B

|η2η2
3η2

4η2
5η2

6 |
� B log B.

In the second case, using the second and the third height condition, it is

�
∑

η1,η2,η5,η7

2ω(η5) �
∑

η1,η5

2ω(η5)B

|η1η2
5 |
� B log B.
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Lemma 4.2.4. We have

N1(B) = 1
25

(∏
p

ω1,p

)
V1,0(B) + O(B(log B)4 log log B),

N2(B) = 1
23

(∏
p

ω2,p

)
V2,0(B) + O(B(log B)3 log log B),

where

ω1,p =
(

1− 1
p

)5(
1 + 5

p

)
,

ω2,p =
(

1− 1
p

)3(
1 + 3

p

)
,

and

V1,0(B) =
∫

|η1|,...,|η6|≥1
V1,1(η1, . . . , η6; B) dη1 · · · dη6,

V2,0(B) =
∫

|η1|,|η2|,|η5|,|η7|≥1
V2,1(η1, η2, η5, η7; B) dη1 dη2 dη5 dη7.

Proof. In the first case, as in [Der09, Lemma 8.5], we have

V1,1(η1, . . . , η6; B)� B1/2

|η1η2|1/2 = B

|η1η2η3η4η5η6|

(
B

|η1η2η2
3η2

4η2
5η2

6 |

)−1/2

.

In the second case, we use

V2,1(η1, η2, η5, η7; B)� B

|η1η2η5η7|
.

Therefore, [Der09, Proposition 4.3, Corollary 7.10] gives the result.

Lemma 4.2.5. We have |V ′
1,0(B)− V1,0(B)| � B(log B)4, where

V ′
1,0(B) =

∫
|η2|,|η4|,|η5|,|η6|≥1,

|η2η2
4η2

5η2
6 |≤B

W (η2, η4, η5, η6, B)B dη2 dη4 dη5 dη6

|η2η4η5η6|
, (4.2)

with
W (η2, η4, η5, η6, B) =

∫
|x0|,|x1|,|x2|, |x0(x0+x2)|

|x1| ≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

|η2x2
2|B

|η2
4η6

5η4
6|

≤1

dx0 dx1 dx2

|x1x2|
,

Proof. We can introduce |η2η2
3η2

4η2
5η2

6 | ≤ B without changing V1,0(B), since this
inequality follows from |η1| ≥ 1 and the second height condition. Afterwards,
we can remove the condition |η1| ≥ 1 from V1,0(B) while changing the integral
by � B(log B)4. Indeed, the integral over η8 is � B1/2

|η1η2|1/2 (as in the bound
for V1 above). Now we use |η1| ≤ 1 (for the new piece of the integral) and
|η2η2

3η2
4η2

5η2
6 | ≤ B (our new condition) to show that the integral over η1, η2 is

� B
|η3η4η5η6| . Integrating over 1 ≤ |ηi| ≤ B (where the upper bound follows
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from |η2|, . . . , |η6| ≥ 1 and the new condition) for i = 3, 4, 5, 6 , we get an error
� B(log B)4, as claimed. The volume now has the form∫

|η2|,...,|η6|≥1, |η2η2
3η2

4η2
5η2

6 |,H(η1,...,η6,η8)≤B

1
|η1|

dη1 · · · dη6 dη8 + O(B(log B)4).

A change of variables with η8 = B
η2η3η4η5η6

x0 and η1 = B
η2η2

3η2
4η2

5η2
6
x1 turns dη1 dη8

|η1|

into B dx0 dx1
|x1η2η3η4η5η6| . A further change of variables η3 = B

η2
4η4

5η3
6
x2 transforms dη3

|η3|

to dx2
|x2| . These substitutions turn the first height condition into |x0| ≤ 1, the

second height condition into |x1| ≤ 1, the third height condition into |x2| ≤ 1,
and the fourth height condition into |x0(x0 + x2)/x1| ≤ 1. The inequality
|η2η2

3η2
4η2

5η2
6 | ≤ B becomes |η2x2

2|B
|η2

4η6
5η4

6 | ≤ 1, and |η3| ≥ 1 becomes |x2| ≥ |η2
4η4

5η3
6 |

B .
The condition |η2η2

4η2
5η2

6 | ≤ B is implied by the |η2η3η2
4η2

5η2
6 | ≤ B and η3 ≥

1.

Lemma 4.2.6. We have

W (η2, η4, η5, η6, B) =
∫

|x2|≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

|η2x2
2|B

|η2
4η6

5η4
6|

≤1

8dx2

|x2|
+ O(1).

Proof. As a first step, we integrate over x1 to get

W (η2, η4, η5, η6, B) =
∫

|x0(x0+x2)|
|x0|,|x2|,≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

|η2x2
2|B

|η2
4η6

5η4
6|

≤1

(−2 log |x0| − 2 log |x0 + x2|)
dx0 dx2

|x2|
, (4.3)

and will integrate the two terms individually. To determine the integral over
the first one, we remove the condition |x0(x0 + x2)| ≤ 1, introducing an error of
at most

|R1(η2, η4, η5, η6, B)| ≤ 4
∫

x0,|x2|≤1,x0≥0
|x0(x0+x2)|≥1

− log x0
dx0 dx2

|x2|
,

by using the symmetry in the signs of x0 and x2. The last inequality implies
that x2 has a distance of at least 1/|x0| (which is ≥ 1) from −x0. Since x0 > 0
and x2 > −1, it cannot be smaller, and thus −x0 + 1/x0 ≤ x2 ≤ 1 holds. We
thus get

|R1(η2, η4, η5, η6, B)| �
∫

0≤x0≤1
− log x0

(∫ 1

−x0+ 1
x0

dx2

|x2|

)
dx0

�
∫

0≤x0≤1

∣∣∣∣log x0 log
(
−x0 + 1

x0

)∣∣∣∣ dx0 � 1.

We can now integrate the first term in (4.3) over x0 and get∫
|x0|,|x2|,|x0(x0+x2)|≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

|η2x2
2|B

|η2
4η6

5η4
6|

≤1

−2 log |x0|
dx0 dx2

|x2|
=
∫

|x2|,
|η2x2

2|B

|η2
4η6

5η4
6|

≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

4dx2

|x2|
+ O(1).
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To treat the second term, we begin with a change of variables x′
0 = x0 +x2, and

add the condition |x′
0| ≤ 1, introducing an error of at most

|R2(η2, η4, η5, η6, B)| ≤
∫

|x′
0−x2|,|x2|,|x′

0(x′
0−x2)|≤1

x′
0>1

4 log x′
0

dx′
0 dx2

|x2|
, (4.4)

again using the symmetry of the integral. The third condition implies |x2−x′
0| ≤

1/|x′
0| < 1, i.e., x′

0 − 1/x′
0 < x2, and thus we get

|R2(η2, η4, η5, η6, B)| �
∫

x′
0>1

log x′
0

∫ 1

x′
0− 1

x′
0

dx2

|x2|

 dx′
0

�
∫

1<x′
0≤2

log x′
0

∣∣∣∣log
(

x′
0 −

1
x′

0

)∣∣∣∣ dx′
0 � 1.

(For the second inequality, note that x′
0 − 1/x′

0 ≤ 1 implies x′
0 ≤ 2.) Thus, the

second term of (4.3) is∫
|x′

0(x′
0−x2)|,|x′

0|,|x′
0−x2|,|x2|≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

|η2x2
2|B

|η2
4η6

5η4
6|

≤1

−2 log |x′
0|

dx′
0 dx2

|x2|
+ O(1).

The condition |x′
0(x′

0 − x2)| ≤ 1 is implied by the second and third condition,
so we can remove it. Removing |x′

0 − x2| ≤ 1 introduces an error of at most

|R3(η2, η4, η5, η6, B)| ≤
∫

x′
0,|x2|≤1,

|x′
0−x2|>1
x′

0≥0

−2 log x′
0

dx′
0 dx2

|x2|

by the symmetry of the integral. The conditions imply −1 ≤ x2 ≤ x′
0 − 1 and

thus

|R3(η2, η4, η5, η6, B)| �
∫

0≤x′
0≤1
− log x′

0

(∫ x′
0−1

−1

dx2

|x2|

)
dx′

0

�
∫

0≤x′
0≤1

log x′
0 log |x′

0 − 1| dx′
0 � 1.

Thus, the integral of the second summand of (4.3) is∫
|x′

0|,|x2|≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

|η2x2
2|B

|η2
4η6

5η4
6|

≤1

−2 log |x′
0|

dx′
0 dx2

|x2|
+ O(1) =

∫
|x2|≤1

|x2|≥
|η2

4η4
5η3

6|
B ,

|η2x2
2|B

|η2
4η6

5η4
6|

≤1

4dx2

|x2|
+ O(1). (4.5)

Adding (4.4) and (4.5) now yields the desired result.

Lemma 4.2.7. We have

V1,0(B) = 25C1B(log B)5 + O(B log B4),
V2,0(B) = 23C2B(log B)4,
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with

C1 = 8 vol

{
(t2, . . . , t6) ∈ R5

≥0

∣∣∣∣∣ t2 + 2t3 + 2t4 + 2t5 + 2t6 ≤ 1,

t3 + 2t4 + 4t5 + 3t6 ≤ 1

}
,

C2 = 4 vol

{
(t1, t2, t5, t7) ∈ R4

≥0

∣∣∣∣∣ 2t1 + 2t2 ≤ 1
4t5 + 2t7 ≤ 1

}
.

Proof. A change of variables inverse to the last one in the proof of Lemma 4.2.5
gives

W (η2, η4, η5, η6, B) =
∫

|η3|≥1
|η2η2

3η2
4η2

5η2
6 |,

|η3η2
4η4

5η3
6 |≤B

8dη3

|η3|
+ O(1).

Plugging this back into (4.2) and removing the inequality |η2η2
4η2

5η2
6 | ≤ B im-

plied by the others, we get

V1,0(B) =
∫

|η2|,|η3|,|η4|,|η5|,|η6|≥1,

|η3η2
4η4

5η3
6 |,|η2η2

3η2
4η2

5η2
6 |≤B

8B dη2 dη3 dη4 dη5 dη6

|η2η3η4η5η6|
+ O(B(log B)4),

since integrating the error term yields∫
|η2|,|η4|,|η5|,|η6|≥1,

|η2
4η4

5η3
6 |,|η2η2

4η2
5η2

6 |≤B

1 · B dη2 dη4 dη5 dη6

|η2η4η5η6|
� B(log B)4

using 1 ≤ |ηi| ≤ B. Restricting to ηi ≥ 1 introduces a factor of 25. Substituting
ηi = Bti turns dηi/ηi to log B dti, and we thus arrive at

V1,0(B) = 25
∫

t2,t3,t4,t5,t6≥0
t3+2t4+4t5+3t6,

t2+2t3+2t4+2t5+2t6≤1

8 dt2 dt3 dt4 dt5 dt6B(log B)5+O(B(log B)4).

For the second case, using the first height condition in the first step, assuming
ηi > 0 (with a factor 2 by symmetry) and transforming ηi = Bti (with dηi =
Bti log B dti) in the second step, we get

V2,0(B) = 2
∫

|ηi|≥1, |η2
1η2

2 |,|η4
5η2

7 |≤B

B dη1 dη2 dη5 dη7

|η1η2η5η7|

= 23B(log B)4
∫

t1,t2,t5,t7≥0, 2t1+2t2≤1, 4t5+2t7≤1
dt1 dt2 dt5 dt7

for the volume.

Plugging this into Lemma 4.2.4, we get

N1(B) = C1
∏

p

ω1,p B(log B)5 + O(B(log B)4 log log B),

N1(B) = C2
∏

p

ω2,p B(log B)4 + O(B(log B)3 log log B),

with ωi,p and Ci as before. The main theorem will follow using that we have
Ci = ci,∞ by Lemma 4.3.5 and that

ωi,p =
(

1− 1
p

)rk Pic Ui

τUi,p(Ui(Zp))

by Lemma 4.3.2.
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4.3 The leading constant
In order to compute the Tamagawa volumes, we work with the chart f : V ′ =
S̃ − V (η1η2η3η4η5η6)→ A2

(η1 : η2 : η3 : η4 : η5 : η6 : η7 : η8 : η9) 7→
(

η7 ·
η2

5η6

η1η2η3
, η8 ·

1
η1η3η4η5η6

)
and its inverse g : A2 → S̃

(x, y) 7→ (1 : 1 : 1 : 1 : 1 : 1 : x : y : −x− y).

Note that the two elements

η7 ·
η2

5η6

η1η2η3
and η8 ·

1
η1η3η4η5η6

have degree 0 in the field of fractions of the Cox ring. The rational map they
define is thus invariant under the torus action and descends to S̃.

Lemma 4.3.1. The images of the sets of p-adic integral points are

f(Ũ1(Zp) ∩ V ′(Qp)) = {(x, y) ∈ Z2
p | |x| ≥ 1 or |xy2| ≥ 1},

f(Ũ2(Zp) ∩ V ′(Qp)) = {(x, y) ∈ Z2
p | |y| ≤ 1, |xy2| ≤ 1, or |x + y| ≤ 1}.

Proof. Consider the image (x, y) of an integral point

(η1 : · · · : η9) = π(η1, . . . , η9)

(given in Cox coordinates), where (η1, . . . , η9) is an integral point of the tor-
sor over U1. Assume |x| < 1. Then η5 6∈ Z×

p or η6 6∈ Z×
p (since η7 ∈ Z×

p ).
In both cases, the coprimality conditions imply η8 ∈ Z×

p , and thus |xy2| =
|η7η2

8/η3
1η2η3

3η2
4η6| ≤ 1.

On the other hand, let us consider a point (x, y) in the above set and con-
struct an integral point (η1, . . . , η9) on the torsor with f(π(η1, . . . , η9)) = (x, y).
If |x| < 1, we distinguish two cases for |y|:

1. If 1/|x| ≤ |y| < 1/|x|2, let η5 = xy, η6 = 1/xy2, η9 = −1 − x/y, and the
remaining coordinates be 1. Then η9 ∈ −1 + pZp ⊂ Z×

p , since |x/y| ≤
|x|1/2 < 1, and thus the coprimality conditions are satisfied.

2. If 1/|x| ≤ |y|, let η4 = 1/xy, η6 = x, η9 = −1− x/y, and let all the other
coordinates be 1. Since |x/y| ≤ |x|2 < 1, we again have η9 ∈ −1 + pZp ⊂
Z×

p , and thus the coprimality conditions hold.

If |x| ≥ 1, we distinguish three cases for |y|.

1. If |y| < 1, let η2 = 1/x, η8 = y, η9 = −1 − y/x, and the remaining
coordinates be 1. Then η9 ∈ −1 + pZp ⊂ Z×

p , since |y/x| < 1.

2. If 1 ≤ |y| < |x|, let η3 = 1/y, η2 = y/x, η9 = −1− y/x, and the remaining
coordinates be 1. Again, we have |y/x| < 1, so that η9 ∈ −1 + pZp ⊂ Z×

p .
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3. Finally, if |x| ≤ |y|, let η3 = 1/x, η4 = x/y, η1 = −1 − x/y, and the
remaining coordinates be 1. If |y| > |x|, we have η1 ∈ −1 + pZp ⊂ Z×

p ; if
|x| = |y|, we have η4 ∈ Z×

p . In both cases, the coprimality conditions on
the torsor are satisfied.

We now turn to U2. Let (x, y) be in the image of the set of integral points.
If |y| > 1, we have either |η5| < 1 or |η1| < 1. In the first case, we get
|xy2| = |η7η2

8/η3
1η2| = η7| ≤ 1 (since all other variables have to be units); for

the second case, we note that

x + y = η4η3
5η2

6η7 + η2η8

η1η2η3η4η6η7
= − η1η9

η1η2η3η4η6η7
,

and thus |x + y| = |η9| ≤ 1 (since all other variables have to be units).
On the other hand, let (x, y) be in the set on the right hand side in the

statement of the lemma. We want to construct an integral point on the torsor
lying above (x, y). If |y| ≤ 1 and |x| ≤ 1, let η8 = y, η7 = x, η9 = −x−y, and the
remaining variables be 1, which satisfies the coprimality-conditions. If |y| ≤ 1
and |x| > 1, let η8 = y, η2 = 1/x, η9 = −1 − y/x, and the remaining variables
be 1. Then η9 ∈ −1− pZp ⊂ Z×

p , so (η1, . . . , η9) is integral. Let now |y| > 1. If
|xy2| ≤ 1, let η5 = 1/y, η7 = xy2, η9 = −1 − xy, and the remaining variables
be 1; again, η9 ∈ Z×

p . Finally, if |x + y| ≤ 1, let η1 = 1/x, η9 = −x − y, and
η8 = −η1η9− 1 and the remaining variables be 1. Then η8 ∈ Z×

p , so (η1, . . . , η9)
is integral, and, since η8/η1 = (−η1η9 − 1)/η1 = x + y − x = y, it indeed lies
above (x, y).

Lemma 4.3.2. We have

τU1,p(U1(Zp)) = 1 + 5
p

and τU2,p(U2(Zp)) = 1 + 3
p

.

Proof. We again start with the first case: We want to integrate ‖(dx ∧ dy) ⊗
1E7‖−1

ω
S̃

(D) over the set of integral points. To make sense of this, we need a
metric on the log-anticanonical bundle, not just on a line bundle isomorphic to
it. To this end, we consider the isomorphism between the canonical bundle ω

S̃
and the line bundle L whose meromorphic sections are elements of degree ω

S̃
of

the field of fractions of Cox ring that maps dx∧ dy to η−1
3 η2

5η6; in addition, we
consider the isomorphisms between O(Ei) and the line bundles whose sections
are elements of the Cox ring mapping 1Ei

to ηi. In Cox coordinates, this norm
is

|η3η−2
5 η−1

6 |
|η7|max{|η2η3η4η5η6η8|, |η1η2η2

3η2
4η2

5η2
6 |, |η3η2

4η4
5η3

6η7|, |η8η9|}
. (4.6)

Evaluating this at the image of (x, y) and integrating over the set of integral
points yields

τU1,p(U(Zp)) =
∫

x,y∈Qp,

|x|≥1 or |xy2|≥1

1
|x|max{1, |x|, |y|, |y(y + x)|}

dx dy

for the Tamagawa volumes at finite places.
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Let us compute this volume. Subdividing the domain of integration into
the regions with |x| > |y|, |x| = |y|, and |x| < |y| in order to simplify the
denominator, we get∫

|y|<|x|,
|x|≥1

1
|x|max{|x|, |xy|}

dx dy +
∫

|y|=|x|,
|x|≥1

1
|x|max{|x|, |y(y + x)|}

dx dy

+
∫

|x|<|y|,
|xy2|≥1

1
|xy2|

dx dy

(4.7)

after simplifying the description of the domains (|x| < 1 would imply |xy2| ≤
|x|3 < 1 in the first two cases; |y|2 < 1/|x| would imply |y|2 < 1/|x| ≤ 1 ≤
|x|2 < |y|2 in the third case).

The first of the integrals in (4.7) is∫
|x|≥1

1
|x|2

∫
|y|<|x|

1
max{1, |y|}

dy dx =
∫

|x|≥1

1
|x|2

(
1
p

+
∫

1≤|y|<|x|

1
|y|

dy

)
dx

=
∫

|x|≥1

1
|x|2

(
1
p

+
(

1− 1
p

)
|v(x)|

)
dx = 1

p
+
∑
δ≥0

(
1− 1

p

)2
δ

pδ
= 2

p
, (4.8)

while the second integral is∫
|y+x|≤ 1

p

|x|≥1

1
|x|2

+
∫

|y+x|≥1
|x|≥1,|y|=|x|

1
|xy(x + y)|

. (4.9)

The first integral in (4.9) is 1
p

∫
|x|≥1

1
|x|2 dx = 1

p . Turning to the second one, we
note that |x| = |y| is implied by the ultrametric triangle inequality if |x+y| < |x|.
The set of y ∈ Qp with |x + y| = |x| and |y| = |x| has volume |x| − 2|x|/p, since
the two sets {y | |y− 0| < |x|} and {y | |y + x| < |x|} have volume |x|/p and are
disjoint, since |y| < |x| implies |y + x| = |x|. We thus get

∫
|x|≥1

1
|x|2

 ∑
0≤δ<|v(x)|

(
1− 1

p

)
pδ

pδ
+
(

1− 2
p

)
|x|
|x|

 dx

=
∫

|x|≥1

1
|x|2

((
1− 1

p

)
|v(x)|+

(
1− 2

p

))
dx = 1

p
+ 1− 2

p
= 1− 1

p
,

computing the integral over x similarly as in (4.8). The second integral in (4.7)
thus evaluates to 1. Finally, the third integral in (4.7) is∫

1
|y|2

∫
1/|y|2≤|x|<|y|

1
|x|

dx dy =
∫

|y|≥1

1
|y|2

∑
−2|v(y)|≤δ<|v(y)|

(
1− 1

p

)
dy

=
∫

|y|≥1

(
1− 1

p

)
3|v(y)|
|y|2

= 3
p

,

again computed analogously to the previous ones. Adding the three terms in
(4.7), we arrive at

τU1,p(U(Zp)) = 2
p

+ 1 + 3
p

= 1 + 5
p

.
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Figure 4.2: Integral points on U1 of height ≤ 90, viewed along
the local chart f of S̃. The boundary divisor E7 is the central
vertical line; the diagonal and the horizontal line which appear to
be “missing” are E8 and E9. (If e.g. η8 = 0, then the coprimality
conditions imply η2, . . . , η6 = ±1, and then the equation implies
η1, η9 ∈ ±1, leaving us only with the two points (±1, 0).)
Some horizontal and diagonal lines look accumulating, but in
fact are not: They contain ∼ c′B points, which is less than the
cB(log B)5 points on U ; the constants c′ can however be up to 2,
while the constant c in our main theorem is numerically ≈ .0003.

In the second case, we can analogously determine the norm

‖(dx ∧ dy)⊗ 1E3 ⊗ 1E4 ⊗ 1E6‖−1
ω

S̃
(D2)

in Cox coordinates:

1
|η3η4η6|

|η3η−2
5 η−1

6 |
max{|η2η5η7η8|, |η2

1η2
2η2

3η4|, |η4η4
5η2

6η2
7 |}

. (4.10)

Integrating this over U2(Zp), using the same local chart as before, yields∫
|y|≤1, |xy2|≤1, or |x+y|≤1

1
max{1, |xy|, |x2|}

dx dy

=
∫

|y|≤1

1
max{1, |x2|}

dx dy +
∫

|y|>1,
|x+y|≤1

1
|y2|

dx dy +
∫

|y|>1,

|x|≤1/|y|2

dx dy,

(since |x| = |y| in the second case). The first integral is then

1 +
∫

|x|>1

1
|x2|

dx = 1 + 1
p

,
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while both the second and third are∫
|y|>1

1
|y2|

dy = 1
p

.

The remaining parts of the constant are associated with maximal faces of
the Clemens complex. The first divisor D1 = E7 is geometrically irreducible,
so the Clemens complex consists of just one vertex, which we will simply name
E7. The second divisor has three vertices corresponding to its components, and
two 1-simplices, which we will call A1 and A2, added between the intersecting
exceptional curves.

E3 E4 E6

A1 A2

Figure 4.3: The Clemens complex of E3 + E4 + E6.

Lemma 4.3.3. We have

τE7,∞(E7(R)) = 8 and τA1,∞(DA1(R)) = τA2,∞(DA2(R)) = 4.

Proof. There is a metric on ωE7 induced by the metrization of ω
S̃

(E7) via the
adjunction isomorphism. We can then compute the unnormalized Tamagawa
volume of E7 by integrating

‖dy‖−1
ωE7

= lim
x→0

(
|x|‖(dx ∧ dy)⊗ 1E7‖−1

ω
S̃

(E7)

)
.

Again evaluating (4.6) in the image of (x, y), we get the volume

τ ′
E7,∞(E7(R)) =

∫
R

lim
x→0

|x|
|x|max{1, |x|, |y|, |y(y + x)|}

dy

=
∫
R

1
max{1, |y2|}

dy = 4,

which we renormalize by multiplying with cR = 2.
For the second case, we work in neighbourhoods of the two intersection points

DA1 = E3 ∩ E4 and DA2 = E4 ∩ E6. The Tamagawa measures on these points
are simply real numbers. In order to compute them, we consider the charts

g′ : A2 → S̃, (a, b) 7→ (1 : 1 : a : b : 1 : 1 : 1 : 1 : −1− b) and
g′′ : A2 → S̃, (c, d) 7→ (1 : 1 : 1 : c : 1 : d : 1 : 1 : −1− cd).

Since ‖ dx ∧ dy‖ = | det(Jf◦g′)|‖ da ∧ db‖, we get the norms

‖(da ∧ db)⊗ 1E3 ⊗ 1E4 ⊗ 1E6‖ω
S̃

(D2) = max{|a3b2|, |ab|, |ab2|} and

‖(dc ∧ dd)⊗ 1E3 ⊗ 1E4 ⊗ 1E6‖ω
S̃

(D2) = max{|c2d|, |cd|, |c2d3|}.
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Figure 4.4: Integral points on U2 of height ≤ 60. On the left: in
a neighbourhood of E3 ∩ E4, viewed along the local chart g′ of S̃.
The divisor E3 is the central vertical line, and E4 is the central
horizontal line. On the right: In a neighbourhood of E4 ∩ E6,
viewed along the local chart g′′ (with flipped axes) of S̃. The
divisor E4 again is the central horizontal line, and E6 is the central
vertical line. The two charts overlap, and fully cover E4.

Analogously to the first case we now arrive at

τ ′
DA1 ,∞ = lim

(a,b)→(0,0)

|ab|
max{|a3b2|, |ab|, |ab2|}

= 1,

and, similarly, τ ′
DA2 ,∞ = 1 for the unnormalized measures on the points DAi

(R),
which we multiply with c2

R = 4.

Lemma 4.3.4. We have

α1 = vol

{
(t2, . . . , t6) ∈ R5

≥0

∣∣∣∣∣ t2 + 2t3 + 2t4 + 2t5 + 2t6 ≤ 1,

t3 + 2t4 + 4t5 + 3t6 ≤ 1

}
,

αA1 = vol

{
(t1, t2, t5, t7) ∈ R4

≥0

∣∣∣∣∣ t1 + t2 ≤ 2t5 + t7

4t5 + 2t7 ≤ 1

}
,

αA2 = vol

{
(t1, t2, t5, t7) ∈ R4

≥0

∣∣∣∣∣ t1 + t2 ≥ 2t5 + t7

2t1 + 2t2 ≤ 1

}
.

Proof. In the first case, we have Pic(U1; E7) = Pic(X) and ΛE7 = EffX , whose
dual is the nef cone of X. To determine α1, we have to compute the volume,
normalized as in 2.3.4, of the intersection of the nef cone with the hyperplane
of R-divisor classes having intersection number 1 with −K −D1. The data in
[Der14] shows that [E7] = [E1+E2+E3−2E5−E6] and −K = [2E1+2E2+3E4+
2E4 +E6] in Pic(S̃). Therefore, [−K−D1] = [E1 +E2 +2E3 +2E4 +2E5 +2E6].
Working with the dual basis of E1, . . . , E6, we obtain

α1 = vol

{
(t1, . . . , t6) ∈ R6

≥0

∣∣∣∣∣ t1 + t2 + t3 − 2t5 − t6 ≥ 0,

t1 + t2 + 2t3 + 2t4 + 2t5 + 2t6 = 1

}
and eliminate t1.
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In the second case, there are two constants αAi
, i = 1, 2 associated with

the maximal faces A1,2 of the Clemens complex. The two divisor groups are
Pic(U2; A1) = Pic(UA1) and Pic(U2; A2) = Pic(UA2), where UA1 = X − E6
and UA2 = X − E3. The constant αA1 is the volume of the intersection of the
dual cone Λ∨

A1
of the effective cone of UA1 with the hyperplane HA1 defined

by 〈 · , KA1〉 = 1, where KA1 is the pullback of the log-anticanonical class.
The Picard group of UA1 is Pic(S̃)/〈E6〉; a basis is given by the classes of
E1, E2, E4, E5, E7 modulo E6, and its effective cone is generated by the classes
of E1, . . . , E5, E7. Since [−K − D2] = [E4 + 4E5 + 2E6 + 2E7] and [E3] =
[−E1 − E2 + 2E5 + E6 + E7], and working modulo E6, we obtain

αA1 = vol

{
(t1, t2, t4, t5, t7) ∈ R5

≥0

∣∣∣∣∣ − t1 − t2 + 2t5 + t7 ≥ 0,

t4 + 4t5 + 2t7 = 1

}
,

and eliminate t4.
The computation of αA2 is similar. Here, our basis is given by the classes

of E1, E2, E4, E5, E7 modulo E3, and we use [E6] = [E1 + E2 + E3 − 2E5 −E7]
and −K −D2 = [2E1 + 2E2 + 2E3 + E4] to obtain

αA2 = vol

{
(t1, t2, t4, t5, t7) ∈ R5

≥0

∣∣∣∣∣ t1 + t2 − 2t5 − t7 ≥ 0,

2t1 + 2t2 + t4 = 1

}
;

again, we eliminate t4.

Lemma 4.3.5. In total, we get archimedean contributions

c1,∞ = α1cRτE7,∞(E7(R))

= 8 vol

{
(t2, . . . , t6) ∈ R5

≥0

∣∣∣∣∣ t2 + 2t3 + 2t4 + 2t5 + 2t6 ≤ 1,

t3 + 2t4 + 4t5 + 3t6 ≤ 1

}
= 13

4320
,

c2,∞ = αA1c2
RτA1,∞(DA1(R)) + αA2c2

RτA2,∞(DA2(R))

= 4 vol

{
(t1, t2, t5, t7) ∈ R4

≥0

∣∣∣∣∣ 2t1 + 2t2 ≤ 1
4t5 + 2t7 ≤ 1

}
= 1

32

to the expected constant.

Proof. The two polytopes whose volumes are αA1 and αA2 fit together to the
one stated. Using the formula [DEJ14, (1.1)] and Magma, we explicitly compute
the volumes.



Chapter 5

Integral points on a toric
variety

5.1 Introduction
The aim of this chapter is to provide an asymptotic formula for the number of
integral points of bounded height on a certain toric variety X. Integral points
on toric varieties were treated by Chambert-Loir and Tschinkel in [CLT10b],
however, our result contradicts part of this work.1

More precisely, let X be the toric variety obtained by first blowing up P1 ×
P1 × P1 (with coordinates a0, a1, b0, b1, c0, c1 and the standard torus action) in
the line l1 = V (a1, b1), and then blowing up the resulting variety in the strict
transform of the line l2 = V (a1, c1) and denote by π : X → P1 × P1 × P1 the
composition of these two blow-ups; let T = π−1(V (a0a1b0b1c0c1)) be the open
orbit of the torus action. Let us consider the divisor D = H + E1 + E2, where
E1 is the strict transform of the exceptional divisor of the first blowup, E2 is the
exceptional divisor of the second blowup, and H is the preimage of the plane
V (a0), and let U = X−D. We are interested in the integral points on a suitable
model U of U . More precisely, using the log-anticanonical height function H
defined after Lemma 5.2.1, we study the number

N(B) = {x ∈ U(Z) ∩ T (Q) | H(x) ≤ B}

of integral points bounded height. After parametrizing the set of integral points
using a universal torsor in Section 5.2, we determine an asymptotic formula
in Section 5.3. The exponent of log B is smaller by 1 than the one given in
[CLT10b], which is explained by an obstruction to the existence of integral
points on a certain part of X: Chambert-Loir’s and Tschinkel’s asymptotic
formula is associated with the one-dimensional face {E1, E2} of the Clemens
complex. There is a function obstructing to the existence of integral points
near E1 and E2, which also makes the leading constant of their asymptotic
formula vanish. In Section 5.4, we compare our formula to the one given by
Chambert-Loir and Tschinkel in greater detail and get a very similar geometric

1This is due to a gap in the proof of Lemma 3.11.4 of which the authors were already aware
and because of which they no longer believed in the correctness of the final result of their
preprint.

75
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interpretation to theirs, associated with the maximal, but only zero-dimensional
face H of the Clemens complex.
Theorem 5.1.1. We have

N(B) = c∞cfinB(log B)bH −1(1 + o(1)),

with

c∞ = αHτH,∞(H(R)),

cfin =
∏

p

(
1− 1

p

)rk Pic U

τU,p(U(Zp)),

where, with the notation of Chapter 2, all constants are associated with the
maximal, but not maximal-dimensional, face H of the Clemens complex. More
explicitly, we have

N(B) = cB(log B)2 + O(B log B(log log B)3),

where

c = 4
∏

p

((
1− 1

p

)2(
1 + 2

p
− 1

p2 −
1
p3

))
.

5.2 Passage to a universal torsor
The fan ΣX of X can be obtained by starting with the fan of P1×P1×P1, then
subdividing it by adding the ray ρx = R(−1,−1, 0), then further subdividing it
by adding the ray ρy = R(−1, 0,−1). The Picard group of X is

Pic(X) = Zπ∗[H1] + Zπ∗[H2] + Zπ∗[H3] + Z[E1] + Z[E2] ∼= Z5,

where H1, H2, and H3 are planes of degree (1, 0, 0), (0, 1, 0), and (0, 0, 1), re-
spectively.

a0

b0

c0

a1

b1

c1

x

y

Figure 5.1: The fan ΣX of X, its rays labeled with the correspond-
ing generators of the Cox ring.

The Cox ring of X is RX = Q[a0, a1, b0, b1, c0, c1, x, y], its generators corre-
sponding to the rays of ΣX . Its grading by Pic(X) (under the above isomor-
phism) is
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a0 a1 b0 b1 c0 c1 x y
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 −1 0 −1 0 0 1 0
0 −1 0 0 0 −1 0 1

.

The irrelevant ideal is generated by the set {
∏

g | ρg 6⊂ σ}σ∈Σ(max) ; it is thus

Iirr = (a1b1c1xy, a1b0c1xy, a1b1c0xy, a1b0c0xy,

a0b1c1xy, a0b0b1c1y, a0a1b0c1y, a0b1c0c1x,

a0a1b1c0x, a0a1b0c0y, a0b0b1c0c1, a0a1b0b1c0),

and we get a universal torsor Y = Spec RX − V (Iirr). The fan ΣX similarly
defines a toric Z-scheme X (cf. e.g. [Dem70]) with XQ ∼= X. The scheme

Y = Spec RX,Z − V (Iirr,Z),

where RX,Z = Z[a0, a1, b0, b1, c0, c1, x, y] and Iirr,Z = Iirr∩RX,Z, is a G5
m,Z-torsor

over X (cf. [Sal98]). In particular, there is a 32-to-1-correspondence between
rational points on X, respectively integral points on X , and the set

Y(Z) =

{
(a0, a1, b0, b1, c0, c1, x, y) ∈ Z5

∣∣∣∣∣
gcd(a1b1c1xy,a1b0c1xy,a1b1c0xy,

a1b0c0xy,a0b1c1xy,a0b0b1c1y,
a0a1b0c1y,a0b1c0c1x,a0a1b1c0x,

a0a1b0c0y,a0b0b1c0c1,a0a1b0b1c0)=1

}
.

of integral points on the torsor Y.
Lemma 5.2.1. The log-anticanonical bundle is big, i.e., in the interior of the
effective cone, but it is not nef. It has the description ωX(D)∨ ∼= L1 ⊗ L∨

2 as
a quotient of base point free bundles, where the class of L1 is (2, 2, 2,−2,−2),
and the class of L2 is (1, 0, 0, 0, 0) under the above isomorphism Pic(X) ∼= Z5.
Proof. Let D = E1 + E2 + H be the sum of the exceptional divisors E1 = V (x),
E2 = V (y) and the invariant plane H = V (a0) not meeting E1 or E2. The
log-anticanonical class ωX(D) corresponds to

(1, 2, 2,−2,−2) =
∑

g generator of RX

deg(g)− deg(x)− deg(y)− deg(a0)

under the above isomorphism Pic(X) ∼= Z5. It is not base point free, since b1c1
divides all of its global sections. Since the same holds for all its multiples, it
is not semi-ample (and thus not nef, since the two notions coincide on toric
varieties). It is, however, big: The effective cone is generated by the degrees of
the generators of the Cox ring, and hence

(1, 2, 2,−2,−2)

= deg(a0)+3 deg(a1)+deg(b0)+7 deg(b1)+deg(c0)+7 deg(c1)+2 deg(x)+2 deg(y)
4 .

is in its interior. Consider the description (2, 2, 2,−2,−2) − (1, 0, 0, 0, 0) as a
difference of base point free classes. We have sets

{a2
1b2

0c2
0, a2

1b2
1c2

0x2, a2
1b2

0c2
1y2, a2

1b2
1c2

1x2y2, a2
0b2

1c2
1} and {a0, a1xy}

of sections corresponding to these to classes. The sections in neither of these
sets can vanish simultaneously, so both classes are indeed base point free, and
these choices of sections induce metrics and a height function.
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Lemma 5.2.2. We have a 4-to-1-correspondence between the set of integral
points U(Z) ∩ T (Q) and the set

{(a0, b1, b2, c1, c2) ∈ Z5
6=0 | gcd(a1b0c0, a1b0c1, a1b1c0, b1c1) = 1} ⊂ Y(Z).

The log-anticanonical height of the image of a point (a1, b0, b1, c0, c1) in the above
set is

H(a1, b0, b1, c0, c1) = |a1|max{
∣∣b2

0
∣∣ , ∣∣b2

1
∣∣}max{

∣∣c2
0
∣∣ , ∣∣c2

1
∣∣}. (5.1)

Proof. The integral points in the preimage of U are precisely the points in Y(Z)
satisfying a0, x, y ∈ {±1}. After plugging these values into the coprimality
condition of the universal torsor, the condition simplifies to

gcd(a1b0c0, a1b0c1, a1b1c0, b1c1) = 1. (5.2)

The generic point of such an integral point lies on the torus if and only if all
coordinates are non-zero.

The choice of global sections of L1 and L2 induces metrics of these line
bundles and, consequently, on the line bundle L1 ⊗ L∨

2 isomorphic to the log-
anticanonical bundle. This metrization thus induces a log-anticanonical height
function. Its value on the image of a point (a0, a1, b0, b1, c0, c1, x, y) ∈ Y(Z) is

max{
∣∣a2

1b2
0c2

0
∣∣ , ∣∣a2

1b2
1c2

0x2
∣∣ , ∣∣a2

1b2
0c2

1y2
∣∣ , ∣∣a2

1b2
1c2

1x2y2
∣∣ , ∣∣a2

0b2
1c2

1
∣∣}

max{|a0| , |a1xy|}
.

Using the facts that |a0| = |x| = |y| = 1 and |a1| ≥ 1, this simplifies to the stated
height function. Using the symmetry in a0, x, y = ±1, we can assume that all
of them are 1, making the 32-to-1-correspondence a 4-to-1-correspondence.

5.3 Counting
In other words, we now have a new description

N(B) = 1
4

#{(a1, b0, b1, c0, c1) ∈ Z5
6=0 | H(a1, b0, b1, c0, c1) ≤ B, (5.2) holds}.

of the counting function, with the height function H in (5.1).

Lemma 5.3.1. We have

N(B) =
∏

p

((
1− 1

p

)2(
1 + 2

p
− 1

p2 −
1
p3

))
V (B) + O(B log B(log log B)3)

with
V (B) = 1

4

∫
|a1|,|b0|,|b1|,|c0|,|c1|≥1,

|a1| max{|b2
0|,|b2

1|} max{|c2
0|,|c2

1|}≤B

d(a1, b0, b1, c0, c1).

Proof. We can further rephrase the counting problem as follows:

N(B) = 1
4

∑
a1,b0,b1,c0,c1∈Z 6=0

H(a1,b0,b1,c0,c1)≤B

θ(a1, b0, b1, c0, c1),
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where θ = 1{gcd(a1b0c0,a1b0c1,a1b1c0,b1c1)=1} =
∏

p θ(p) with

θ(p)(a1, b0, b1, c0, c1) =

{
0, if p | a1b0c0, a1b0c1, a1b1c0, b1c1,

1, else.

We first want to replace the sum over b0 by an integral. The height conditions
imply that ∣∣a1b2

0c2
0
∣∣ , ∣∣a1b2

1c2
0
∣∣ , ∣∣a1b0b1c2

1
∣∣ ≤ B,

since the latter one is the geometric average of two terms in the height function.
We have

1 = B

|a1b0b1c0c1|

(
B

|a1b2
0c2

0|

)−1/4(
B

|a1b2
1c2

0|

)−1/4(
B

|a1b0b1c2
1|

)−1/2

,

and note that the function θ satisfies Definition 7.9 in [Der09]. We use [Der09,
Proposition 3.9] with r = 1, s = 3 and get

N(B) =
∑

a1,b1,
c0,c1∈Z 6=0

θ1(a1, b1, c0, c1)V1(a1, b1, c0, c1; B) + O(B log B(log log B)3),

where V1(a1, b1, c0, c1; B) = 1
4
∫

|b0|≥1
H(a0,b0,b1,c0,c1)≤B

db0 and θ1 =
∏

p θ
(p)
1 with

θ
(p)
1 (a1, b1, c0, c1) =


0, if p | a1c0, a1c1, b1c1,

1− 1
p , if p | b1, p ∤ a1 and (p ∤ c0 or p ∤ c1),

1, if p ∤ b1 and (p ∤ c1 or p ∤ a1c0).

Using the geometric average of the two height conditions involving b0, we can
bound V1 by

V1(a1, b1, c0, c1; B)�

√
B

|a1c0c1|
= B

|a1b1c0c1|

(
B

|a1b2
1c2

0|

)−1/4(
B

|a1b2
1c2

1|

)−1/4

.

Since
∣∣a1b2

1c2
0
∣∣ and

∣∣a1b2
1c2

1
∣∣ are bounded by B, applying [Der09, Proposition 3.9]

once more (with r = 1, s = 2) yields

N(B) =
∑

a1,b1,c1∈Z6=0

θ2(a1, b1, c1)V2(a1, b1, c1; B) + O(B log B(log log B)3),

where V2(a1, b1, c1; B) = 1
4
∫

|b0|,|c0|≥1
H(a0,b0,b1,c0,c1)≤B

d(b0, c0) and θ2 =
∏

p θ
(p)
2 with

θ
(p)
2 (a1, b1, c0, c1) =



0, if p | a1, b1c1(
1− 1

p

)2
, if p | b1c1, p ∤ a1

1− 1
p , if p | b1, p ∤ a1c1

1− 1
p , if p | c1, p ∤ a1b1

1, if p ∤ b1c1.
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To complete the summations, we use the fact that the height conditions imply∣∣a1b2
0c0c1

∣∣ ≤ B, and get an upper bound

V2(a1, b1, c1; B)�
∫

|c0|≥1
|a1b2

1c2
0|≤B

√
B

|a1c0c1|
dc0 �

B3/4

|a1|3/4 |b1|1/2 |c1|1/2

= B

|a1b1c1|

(
B

|a1b2
1c2

1|

)−1/4

for V1. Since
∣∣a1b2

1c2
1
∣∣ ≤ B, [Der09, Proposition 4.3] yields the desired result,

for which are only left to check that the constant is indeed
∏

p cp with

cp = 1
p2

(
1− 1

p

)(
1− 1

p

)2

+ 21
p

(
1− 1

p

)2(
1− 1

p

)
+
(

1− 1
p

)2

=
(

1− 1
p2

)(
1 + 2

p
− 1

p2 −
1
p3

)
.

Proposition 5.3.2. We have

N(B) = cB(log B)2 + O(B log B(log log B)3),

where

c = 4
∏

p

((
1− 1

p

)2(
1 + 2

p
− 1

p2 −
1
p3

))
.

Proof. We just have to provide an asymptotic for V (B). The error we introduce
when removing the condition |a1| ≥ 1 in the integral, while keeping the condition
max{

∣∣b2
0
∣∣ , ∣∣b2

1
∣∣}max{

∣∣c2
0
∣∣ , ∣∣c2

1
∣∣} ≤ B implied by the others, is at most

2
∫

|c0|,|c1|≥1,

max{|b2
0|,|b2

1|} max{|c2
0|,|c2

1|}≤B

d(b0, b1, c0, c1)

�
∫

|c0|,|c1|≥1

B

max{|c2
0| , |c2

1|}
d(c0, c1)� B log B.

Using the symmetry of the integral, we get

V (B) =
∫

|b0|,|b1|,|c0|,|b0|≥1
|b0|≤|b1|,|c0|≤|c1|,
|b2

1c2
1|≤B

B

|b2
1| |c2

1|
d(b0, b1, c0, c1) + O(B log B).

Removing |b0| ≥ 1 introduces an error of at most

2
∫

|b1|,|c1|≥1
|c0|≤|c1|≤

√
B/|b1|

B

|b2
1| |c2

1|
d(b1, c0, c1)�

∫
1≤|c1|≤B

B

|c1|
dc1 � B log B,

as, analogously, does removing |c0| ≥ 1. We thus have

V (B) = 4
∫

|b1|,|c1|≥1,

|b1|≤
√

B/|c1|

B

|b1| |c1|
d(b1, c1) + O(B log B)

= 4
∫

1≤|c1|≤
√

B

B log B

|c1|
+ O(B log B) = 4B(log B)2 + O(B log B).
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5.4 Interpretation of the result
Remember that the Clemens complex associated with a split toric variety (X, D)
over Q encodes the incidence properties of the irreducible components of the
boundary divisor D in the following way: It consists of vertices {D′} for every
irreducible component D′ of D, and we glue an s-simplex {D0, . . . , Ds} to the
complex whenever the intersection

⋂s
i=0 Di is non-empty. With a maximal face

A, we associated the lattice ΛA = Pic(X −
⋃

D′ 6∈A D′) and its effective cone
EffA ⊂ ΛA. For our variety, this means that the Clemens complex consists
of a 1-simplex A = {E1, E2} and an isolated vertex {H} (which we will also
simply denote by H). Integral points tend to accumulate around the boundary
divisor; their number is dominated by those points lying near the intersection
of a maximal number of boundary components. It is for this reason that the
dimension of the Clemens complex is part of the exponent in the main theorem
of [CLT10b].

H E1 E2

A

Figure 5.2: The Clemens complex of D

For the toric variety X, this does not hold. There is an obstruction to the
existence of points near the intersection E1 ∩ E2 (and even to the existence of
integral points near E1∪E2): Let us consider the rational function f = a1xy/a0
(in fact, a character of T ) on X. It is a non-constant regular function on
UA = X −H, so there is an obstruction in the sense of Proposition 2.4.1.

Concretely, this means the following: The function f is a regular in a neigh-
bourhood of E1 ∩E2, vanishing on E1 ∩E2. If a point p is near E1 ∩E2, |f(p)|
should thus be small. However, since f is a regular function on U , its value is an
integer at any integral point in U(Z) – and thus |f(p)| ≥ 1 except for points on
the subvariety {f = 0}. This means that the only integral points that are close
to E1 ∩E2 can be points on this subvariety (which we excluded in our counting
problem). For this reason we cannot expect a contribution of the maximal face
A of the Clemens complex to our asymptotic formula. Since f is even regular
on neigbourhoods of both E1 and E2, there can in fact be no integral points
near either of those divisors and we cannot expect a contribution of those two
non-maximal faces. The existence of this function also has an effect on the
Picard group. That f vanishes on E1, E2, and H ′ = V (a1), and that it has a
pole on H means that we have [E1] + [E2] + [H ′] = [H] in Pic(X), and thus
[E1] + [E2] + [H ′] = 0 in Pic(X − H). All three classes are non-trivial, hence
the effective cone of X −H contains a plane. It is thus not strictly convex, and
its characteristic function is identically 0.

Since a value of the characteristic function is a factor of the leading constant
in op. cit., this means that, for this variety, the leading constant is zero, contrary
to their claim in Lemma 3.11.4. In particular, this variety is an example for
the obstruction in Section 2.4, and, more precisely, the situation considered in
Lemma 2.4.3. The exponent of log B in our Proposition 5.3.2 is one less than
the one given by Chambert-Loir and Tschinkel. We can however interpret our
asymptotic formula analogously to the formula given by Chambert-Loir and
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Tschinkel: There is no obstruction at the only remaining maximal face H of the
Clemens complex. Substituting this face for the maximal dimensional face A
of the Clemens complex, we get the correct asymptotic formula. Summarizing,
the situation is as follows:

Proposition 5.4.1.

1. The cone ΛA = EffX−H ⊂ Pic(X − H)R, associated with the unique
maximal-dimensional face A of the Clemens complex, is not strictly convex.

2. The cone ΛH , associated with the unique other maximal face H, is strictly
convex. The constant associated with this face is αH = 1/8, and the
exponent associated with it is bH = b′

H = 3.

3. We have
N(B) = cB(log B)bH −1(1 + o(1)),

where

c = αHτH,∞(H(R))
∏

p

((
1− 1

p

)rk Pic(U)

τU,p(U(Zp)

)
.

Proof. The Picard group Pic(U ; A) = Pic(X −H) is the quotient

Pic(X)/[H] ∼= Z5/(1, 0, 0, 0, 0)/ ∼= Z4.

The effective cone is generated by the classes of the torus-invariant prime divisors

(0, 0,−1,−1), (1, 0, 0, 0), (1, 0,−1, 0), (0, 1, 0, 0),
(0, 1, 0,−1), (0, 0, 1, 0), and (0, 0, 0, 1),

and thus contains the plane {(0, 0, x, y) | x, y ∈ R}; in particular, it is not
strictly convex.

The Picard group Pic(U ; H) = Pic(UH) for UH = X − V (x) − V (y) is the
quotient

Pic(X)/

〈(
0
0
0
1
0

)
,

(
0
0
0
0
1

)〉
∼= Z3.

Its rank is b′
H = 3, so it coincides with

bH = rk Pic(U) + Pic E(U) + #H = 2 + 0 + 1.

The effective cone ΛH = EffUH
is smooth and generated by

(1, 0, 0), (0, 1, 0), and (0, 0, 1).

The image of the log-anticanonical class in this quotient is (1, 2, 2). The char-
acteristic function of ΛA thus evaluates to 1/4, and we get

αH = 1
(b′

H − 1)!
1
4

= 1
8

.

Comparing this, together with the descriptions of the Tamagawa volumes in
Lemma 5.4.3, to Proposition 5.3.2 gives the stated asymptotic formula.
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To compute the Tamagawa volumes, we consider the chart

X − V (a1b1c1xy) → A3,

(a0 : a1 : b0 : b1 : c0 : c1 : x : y) 7→
(

a0

a1xy
,

b0

b1x
,

c0

c1y

)
and its inverse A3 → X

(a, b, c) 7→ (a : 1 : b : 1 : c : 1 : 1 : 1).

Lemma 5.4.2. Under this chart, the integral points U(Zp) correspond to

{(a, b, c) ∈ Z3
p | either |a| = 1, or |a| > 1 and |b| , |c| ≤ 1}.

Proof. Let (a, b, c) be the image of a point (a0, a1, b0, b1, c0, c1, x, y) ∈ Y ′(Zp).
Since a0 ∈ Z×

p , we have |a| = |a0/a1xy| ≥ 1. If |a| ≥ 1, then |a1| < 1,
since x, y ∈ Z×

p . The coprimality conditions then imply b1c1 ∈ Z×
p , and thus

|b| = |b0|, |c| = |c0| ≤ 1.
On the other hand, consider a point (a, b, c) in the above set. If |a| = 1, let

a1 = x = y = 1 and a0 = a−1. If |b| ≤ 1, let b0 = b and b1 = 1, else, let b0 = 1
and b1 = b−1, and set c0, c1 analogously. Then (a0, a1, b0, b1, c0, c1, x, y) ∈
Y ′(Zp) maps to (a, b, c). If |a| > 1, let a0 = a, b0 = b, c0 = c, and the
remaining coordinates be 1. Again, (a0, a1, b0, b1, c0, c1, x, y) is integral and
maps to (a, b, c).

Lemma 5.4.3. We have

τH,∞(H(R)) = 16 and τU,p(U(Zp)) = 1 + 2
p
− 1

p2 −
1
p3

for all primes p.

Proof. Similarly to the previous varieties, we choose the isomorphism from ωX

to the bundle LωX
whose sections are elements of degree ωX in the Cox ring

that maps da ∧ db ∧ dc to a−2
1 b−2

1 c−2
1 x−1y−1. For the archimedean volume, we

want to integrate ‖1E11E2 db ∧ dc‖ωH (E1+E2) =
∥∥a−11E11E2 da ∧ db ∧ dc

∥∥
ωX (D)

on H(R) (regarding a−1 ∈ Γ(U,O(−H)) ⊂ Γ(U,KA3)). Outside H, we have
a−1 = a−11H , where the first factor is a section in Γ(A3 −H,OA3), and thus

‖1E11E2 db ∧ dc‖ωH (E1+E2) = lim
a→0

(∣∣a−1∣∣ ‖1H1E11E2 da ∧ db ∧ dc‖ωX (D)

)
The norm ‖1H1E11E2 da ∧ db ∧ dc‖ωX (D) is

max{|a0| , |a1xy|}
|a0xy|max{|a2

1b2
0c2

0| , |a2
1b2

1c2
0x2| , |a2

1b2
0c2

1y2| , |a2
1b2

1c2
1x2y2| , |a2

0b2
1c2

1|}

at a point (a0 : a1 : b0 : b1 : c0 : c1 : x : y) given in homogeneous coordinates.
Evaluation this in the image of a point (a, b, c) now yields

‖db ∧ dc‖ = lim
a→0

|a|max{1, |a|}
|a|max{|b2c2| , |c2| , |b2| , 1, |a2|}

= 1
max{1, |b|2}max{1, |c|2}
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Integrating now gives the archimedean Tamagawa volume

τ(H,E1+E2),∞(H(R)) =
∫
R2

1
max{1, |b|2}max{1, |c|2}

db dc = 16,

which has to be renormalized with the factor cR = 2.
For the Tamagawa volumes at the non-archimedean places, we integrate

‖1H1E11E2 da ∧ db ∧ dc‖ωX (D) over U(Zp). Using the same description as above,
this yields(

1− 1
p

)∫
b,c∈Qp

1
max{1, |b|2}max{1, |c|2}

db dc +
∫

|a|>1
|b|,|c|≤1

1
|a|2

da db dc

The first integral is(∫
b∈Qp

1
max{1, |b|2}

db

)2

=

(
1 +

∫
|b|>1

1
|b|2

db

)2

=
(

1 + 1
p

)2

,

and the second is ∫
|a|>1

1
|a|2

da = 1
p

,

so, in total, we get

τU,p(U(Zp)) =
(

1− 1
p

)(
1 + 1

p

)2

+ 1
p

= 1 + 2
p
− 1

p2 −
1
p3 .
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